R语言:基本函数、统计量、常用操作函数
先言:R语言常用界面操作
帮助:help(nnet) = ?nnet =??nnet
清除命令框中所有显示内容:Ctrl+L
清除R空间中内存变量:rm(list=ls())、gc()
获取或者设置当前工作目录:getwd、setwd
保存指定文件或者从磁盘中读取出来:save、load
读入、读出文件:read.table、wirte.table、read.csv、write.csv
1、一些简单的基本统计量
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#基本统计量
sum/mean/sd/min #一些基本统计量
which.min() #找出最小值的序号
以上是单数列,如果是多变量下的呢?
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#多元数据
colMeans() #每列,row是行(横向)
colnames() #列名
colSums() #列求和
cov() #协方差阵
cor() #相关矩阵
cor.test() #相关系数
abs 绝对值
sqrt 平方根
exp e^x次方
log 自然对数
log2,log10 其他对数
sin,cos,tan 三角函数
sinh,cosh,tanh 双曲函数
poly 正交多项式
polyroot 多项式求根
对象操作:
assign 赋值操作,等同于“<-”
rm 删除对象
ls 显示内存中的对象
str 显示对象的内在属性或简要说明对象
ls.str 展示内存中所有对象的详细信息
length 返回对象中元素的个数
names 显示数据的名称,对于数据框则是列名字
levels 因子向量的水平
dim 数据的维度
nrow 矩阵或数据框的行数
ncol 列数
rownames 数据的行名字
colnames 列名字
class 数据类型
mode 数据模式
head 数据的前n行
tail 数据的后n行
summary 显示对象的概要
attr x的属性类型
is.na 检测变量的类型
is.null
is.array
is.data.frame
is.numeric
is.complex
is.character
简单统计:
max 最大元素
min 最小元素
range 最小值和最大值组成的向量
sum 和
prod 元素连乘
pmax 向量间相同下标进行比较最大者,并组成新的向量
pmin 向量间相同下标进行比较最小者,并组成新的向量
cumsum 累积求和
cumprod 连乘
cummax 最大
cummin 最小
mean 均值
weighted,mean 加权平均数
median 中位数
sd 标准差
norm 正态分布
f F分布
unif 均匀分布
cauchy 柯西分布
binom 二项分布
geom 几何分布
chisq.test 卡方检验,进行独立性检验
prop.test 对总体均值进行假设检验
shapiro.test 正态分布检验
t.test T检验,对总体均值进行区间估计
aov 方差分析
anova 一个或多个模型对象的方差分析
2、向量
向量在循环语句中较为广泛
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#向量
#向量在循环语句中较为广泛
M=vector(length = 8);M #生成一个长为8的布尔向量
M[1]="1";M #赋值之后就会定义为字符
M[1]=1;M #赋值之后,定义为数值
逻辑向量使用
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
y[y < 0] <- -y[y < 0] #表示将向量(-y)中 与向量y的负元素对应位置的元素 赋值给 向量y中 与向量y负元素对应的元素。作用相当于: y <- abs(y)
3、数据储存形式
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#数据储存形式
data.frame(wi=iris,ci=cars) #数据框形式,可以直接定义变量名
list(wi=iris,ci=cars) #list,也可以直接定义变量名
注意:attach()、detach()
可以将数据框中的变量释放到Rs内存中,然后就可以直接调用。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
attach(iris)
names(setosa)
detach(iris)
在data.frame中,是可以实现数据集重命名的,比如data.frame(x=iris,y=cars),
也可以实现横向、纵向重命名,data.frame(x=iris,y=cars,row.names=iris)
4、数据查看函数——names、str、unique组合、typeof()、mode()、class()
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
##数据查看函数
names(iris) #查看所有变量名字
str(iris) #变量属性(int整数,num数值)
unique(iris$setosa) #查看分类变量的水平
table(iris$setosa) #分类水平,不同水平的个数(=unique+sum功能)
summary(iris) #所有变量各自的均值、分位数、众数、最大、最小值等统计量,在回归中就是系数表等
attributes(iris) #包括names(变量名)、row.names(序号的名称)、class(数据形式)
一般names、str、unique会组合使用。
如何查看数据类型——typeof()、mode()、class()的区别?
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
我这里用个因子例子来说明,希望能讲清楚
> gl(2,5) #新建一个因子
[1] 1 1 1 1 1 2 2 2 2 2
Levels: 1 2
> class(gl(2,5)) #查看变量的类,显示为因子;
[1] "factor"
> mode(gl(2,5)) #查看数据大类,显示为数值型;
[1] "numeric"
> typeof(gl(2,5)) #查看数据细类,显示为整数型;
[1] "integer"
#来自:http://f.dataguru.cn/thread-99785-1-1.html
从精细度上说,typeof>mode>class.
5、矩阵的基本知识与注意
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#矩阵的基本知识
t() #转置
det() #行列式,方阵
x%*%y #向量内积
x%o%y#向量外积
A=array(1:9,dim=c(3,3))
A*A #这个代表矩阵内两两子元素相乘
A%*%A #才是我们想要的结果
crossprod(A,A) #等于t(A)%*%A
crossprod(t(A),A) #等于A%*%A,所以需要t(A)一下
t 矩阵转置
rowsum 行求和
colsum 列求和
rowmeans 行平均
colmeans 列平均
solve 对线性方程求解或求矩阵的逆
diag 对角阵
6、因子
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
##因子(≈文本+数字的组合)
#SPSS中值标签定义有异曲同工之妙
M=factor(iris$setosa,levels=c(1,0),labels=c("M","F"));M #能够转化因子格式+定义值标签
M=as.factor(iris$setosa);M #上面的函数更有效,因为as.factor只能转化成因子格式
7、输入输出
library 加载包
data 加载制定数据集
load 加载save或者save.image保存的数据
read.table 读取表格
read.csv 读取以逗号分割的表格
read.delim 读取以tab分割个表格
read.fwf 以fixed width formatted 形式读取数据至表格
save 二进制保存指定对象
save.image 二进制保存当前线程内所有对象
write.table 将数据以表格形式写入文本
write.csv 将数据以CSV表格形式写入文本
cat 强制转化为字符后输出
sink 输出转向到指定文件
print 输出屏幕
format 格式化
8、逻辑运算
!x 逻辑非
x & y 逻辑与
x && y 逻辑与(仅匹配并返回第一个值)
x | y 逻辑或
x || y 逻辑或(仅返回第一个值)
x or (x,y) 异或
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16