
R语言:数据去重
查看重复的方式,有点像分类变量个数一样,unique() 或者 table() 都是很好的方式去检测。
1、unique函数
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
> rt
年 月 公司名 利率
1 2000 1 A a
2 2000 1 A a
3 2001 2 A b
4 2001 3 A c
5 2000 1 B d
6 2000 2 B e
7 2000 2 B e
> unique(rt)
年 月 公司名 利率
1 2000 1 A a
3 2001 2 A b
4 2001 3 A c
5 2000 1 B d
6 2000 2 B e
> unique(rt,fromLast=TRUE)
年 月 公司名 利率
2 2000 1 A a
3 2001 2 A b
4 2001 3 A c
5 2000 1 B d
7 2000 2 B e
以上是根据你的数据得到的,R中默认的是fromLast=FALSE,即若样本点重复出现,则取首次出现的;
否则去最后一次出现的。列名不变,去掉重复样本值之后的行名位置仍为原先的行名位置。
2、duplicated函数
在数据框中应用较为广泛。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#源数据
> data.set
Ensembl.Gene.ID Gene.Biotype Chromosome.Name Gene.Start..bp. Gene.End..bp.
1 ENSG00000236666 antisense 22 16274560 16278602
2 ENSG00000236666 antisense 22 16274560 16278602
3 ENSG00000234381 pseudogene 22 16333633 16342783
4 ENSG00000234381 pseudogene 22 16333633 16342783
5 ENSG00000234381 pseudogene 22 16333633 16342783
6 ENSG00000234381 pseudogene 22 16333633 16342783
7 ENSG00000234381 pseudogene 22 16333633 16342783
8 ENSG00000234381 pseudogene 22 16333633 16342783
9 ENSG00000234381 pseudogene 22 16333633 16342783
10 ENSG00000224435 pseudogene 22 16345912 16355362
#构建一个布尔向量,索引
> index<-duplicated(data.set$Ensembl.Gene.ID)
> index
[1] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
#筛选数据
> data.set2<-data.set[!index,] #选中了非重复的数据
> data.set2
#用法与is.na()对比
x[!is.na(x)] #选中不是缺失值的数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05