
我国电力大数据的应用前景
有一个流行的词语“云大物移”,指的是云计算、大数据、物联网和移动通信,在现代社会大数据是非常重要的资源。阿里巴巴创办人马云在演讲中曾提到,未来的时代将不是IT时代,而是DT时代,DT就是Data Technology数据科技,显示出大数据在未来举足轻重的地位。
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。
电力大数据技术
电力是大数据理念、技术和方法在电力行业的实践。电力大数据涉及到发电、输电、变电、配电、用电、调度各环节,是跨单位、跨专业、跨业务数据分析与挖掘,以及数据可视化。
电力大数据由结构化数据和非结构化构成,随着智能电网建设和物联网的应用,非结构化数据呈现出快速增长的势头,其数量将大大超过结构化数据。电力大数据的特性满足大数据的五个特性,一是数据量大(Volume)、二是处理速度快(Velocity)、三是数据类型多(Variety)、四是价值大(Value)、五是精确性高(Veracity)。
电力大数据技术满足电力数据飞速增长,满足各专业工作需要,满足提高电力工业发展需要,服务经济发展需要。电力大数据技术包括:高性能计算、数据挖掘、统计分析、数据可视化等。
1.高性能计算
通过Hadoop分布式计算技术采用MAP-REDUCE模型建立分布式计算集群或者Yonghong Z-Suite等高性能工具,对电力大数据进行分布式计算和处理。
2.数据挖掘技术
数据挖掘技术是通过分析大量数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。
数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等等。
3.统计分析
统计分析,常指对收集到的有关数据资料进行整理归类并进行解释的过程。 统计分析可分为描述统计和推断统计。
4.数据可视化技术
数据可视化数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息,便于相关者对数据的理解和认识。数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。
电力大数据的三种商业应用模式
对接智能电网优化需求响应
也就是通过将能源生产、消费数据与内部智能设备、客户信息、电力运行等数据结合,充分挖掘客户行为特征,提高能源需求预测准确性,发现电力消费规律,提升企业运营效率效益。
对于电网企业来说,这个模式能够提高企业经营决策中所需数据的广度与深度,增强对企业经营发展趋势的洞察力和前瞻性,有效支撑决策管理。
能源数据综合服务平台
该模式通过建设一个分析与应用平台,集成能源供给、消费、相关技术的各类数据,为包括政府、企业、学校、居民等不同类型参与方提供大数据分析和信息服务。该模式中,电网企业具有资金、技术、数据资源等方面优势,具备成为综合服务平台提供方的条件。
支撑智能化节能产品研发
该模式主要将能源大数据、信息通讯与工业制造技术结合,通过对能源供给、消费、移动终端等不同数据源的数据进行综合分析,设计开发出节能环保产品,为用户提供付费低、能效高的能源使用与生活方式。
以智能家居产品为例,该模式既可为居民用户提供节能降费服务以及快捷便利的用户体验,也可对能源企业尤其是电力企业改善用户侧需求管理、减少发电装机等方面发挥作用。正在美国走向普及的智能电表也是一例,它具有电量结算功能,在整个电网范围内标识售电商和用户,可通过更换芯片更换售电商。该模式中,电网企业不一定具备产品研发优势,但可利用电力数据采集与分析方面的优势,既可通过与设备制造商合作改进用户需求侧管理,也可通过共同参与研发并在产品销售中获取收益。
大数据应用现状和在电力行业中的应用场景
大数据应用涉及电力企业的各个业务领域。在规划领域,通过对用电采集大数据的分析,利用数据挖掘技术,更准确地掌握用电负荷分布和变化规律,提高中长期负荷预测准确度;在建设业务方面,通过对现场照片进行批量比对分析,利用分布式存储、并行计算、模式识别等技术,掌握施工现场的安全隐患,或者核查安全整改措施落实情况;在运行领域,利用机器学习、模式识别等多维分析预测技术,分析新能源出力与风速、光照、温度等气象因素的关联关系,以便更准确地对新能源的发电能力进行预测和管理。在检修领域,通过研究消缺、检修、运行工况、气象条件等因素对设备状态的影响,以及设备运行的风险水平,利用并行计算等技术实现检修策略优化,指导状态检修的深入开展。
目前,电力大数据应用场景主要在以下方面:
(1)规划—提升负荷 预测能力。通过对大数据的分析,利用数据挖掘技术,更准确地掌握用电负荷的分布和变化规律,提高中长期负荷的预测准确度。
(2)建设—提升现场安全管理能力。对现场照片进行批量比对分析,利用分布式存储、并行计算、模式识别等技术,掌握施工现场的安全隐患,或者核查安全整改措施的落实情况。
(3)运行—提升新能源调度管理能力。利用机器学习、模式识别等多维分析预测技术,分析新能源的出力与风速、光照、温度等气象因素的关联关系,更准确地对新能源的发电能力进行预测和管理。
(4)检修—提升状态检修管理能力。研究消缺、检修、运行工况、气象条件等因素对设备状态的影响,以及设备运行的风险水平,利用并行计算等技术实现检修策略优化,指导状态检修的深入开展。
(5)营销—提升对用电行为的分析能力。扩展用电采集的范围和频次,利用聚类模型等挖掘手段,开展对用电行为特征的深入分析,并实施区别化的用户管理策略。
(6)运监—提升业务关联分析能力。利用流式计算、可视化和并行处理等技术,实现全方位在线监测、分析、计算,通过聚类和模式识别技术,解决对跨业务的关联分析、数据因子分析、数据诊断规则和算法,提高数据质量监控和治理。
(7)客服—提升服务效率。对客服录音进行实时监管,利用模式识别、机器学习等技术,对热点问题的服务资源进行优化分配,提升交互水平。
小结
除了上面一些对电力大数据积极的看法,同时也有人认为,国内电网行业技术上并不算落后,对国外相关技术的研究也有深入的理解,但是国内电网行业相对封闭,很多国外的新技术和新思想并不适用于国内,电力大数据根本没有施展的基础和环境。当前说大数据,更多的是噱头,难以实际应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07