【spss典型相关分析】数学建模__SPSS_典型相关分析
典型相关分析
在对经济问题的研究和管理研究中,不仅经常需要考察两个变量之间的相关程度,而且还经常需要考察多个变量与多个变量之间即两组变量之间的相关性。典型相关分析就是测度两组变量之间相关程度的一种多元统计方法。
典型相关分析计算步骤
(一)根据分析目的建立原始矩阵 原始数据矩阵
?x11?x21
?
????xn1
x12x2xn2
?x1p?x2p?
?xnp
y11y21yn1
y12y22yn2
y1q??y2q??
??
?
?ynq???
(二)对原始数据进行标准化变化并计算相关系数矩阵
?R11
R = ?
?R21R12?
R22??
?为第一组变量其中R11,R22分别为第一组变量和第二组变量的相关系数阵,R12= R21
和第二组变量的相关系数
(三)求典型相关系数和典型变量
?1?1?1?1
计算矩阵A?R11R12R22R21以及矩阵B?R22R21R11R12的特征值和特征向量,分
别得典型相关系数和典型变量。
(四)检验各典型相关系数的显著性
第五节 利用SPSS进行典型相关分析
第一步,录入原始数据,如下表:X1 X2 X3 X4 X5 分别代表多孩率、综合节育率、初中及以上受教育程度的人口比例、人均国民收入和城镇人口比例。
第二步,调用CANCORR程序。
1、点击“Files→New→Syntax”打开如下对话框。
2、输入调用命令程序及定义典型相关分析变量组的命令。如图
输入时要注意“Canonical correlation.sps”程序所在的根目录,注意变量组的格式和空格。
第三步,执行程序。用光标选择这些命令,使其图黑,再点击运行键有典型相关分析结果。 ,即可得到所
输出结果
1
输出结果
2
主要结果的解释:
第一组变量相关系数
Correlations for Set-1
X1 X2
X1 1.0000 -.7610
X2 -.7610 1.0000
第二组变量相关系数
Correlations for Set-2
X3 X4 X5
X3 1.0000 .7712 .8488
X4 .7712 1.0000 .8777
X5 .8488 .8777 1.0000
第一组与第二组变量之间的相关系数
Correlations Between Set-1 and Set-2 X3 X4 X5
X1 -.5418 -.4528 -.4534
X2 .2929 .2528 .2447
典型相关系数
Canonical Correlations
1 .578
2 .025
维度递减检验结果(降维检验)
Test that remaining correlations are zero: Wilk's Chi-SQ DF Sig. 1 .666 10.584 6.000 .102 2 .999 .017 2.000 .992
标准化典型系数—第一组
Standardized Canonical Coefficients for Set-1 1 2
X1 -1.319 .797
X2 -.486 1.463
粗系数—第一组(没有标准化的,作者注) Raw Canonical Coefficients for Set-1 1 2
X1 -.131 .079
X2 -.091 .275
_
标准化典型系数—第二组
Standardized Canonical Coefficients for Set-2
1 2
X3 .997 -.261
X4 .292 2.075
X5 -.274 -1.743
粗系数—第二组(没有标准化的,作者注)
Raw Canonical Coefficients for Set-2
1 2
X3 .086 -.023
X4 .000 .002
X5 -.017 -.107
典型负载系数(结构相关系数:典型变量与原始变量之间的相关系数)第一组 Canonical Loadings for Set-1
1 2
X1 -.949 -.316
X2 .517 .856
交叉负载系数(某一组中的典型变量与另外一组的原始变量之间的相关系数)—第一组原始变量
Cross Loadings for Set-1
1 2
X1 -.548 -.008
X2 .299 .022
典型负载系数(结构相关系数:典型变量与原始变量之间的相关系数)第二组 Canonical Loadings for Set-2
1 2
X3 .990 -.140
X4 .821 .344
X5 .829 -.143
交叉负载系数(某一组中的典型变量与另外一组的原始变量之间的相关系数)—第二组原始变量
Cross Loadings for Set-2
1 2
X3 .572 -.004
X4 .474 .009
X5 .479 -.004
Redundancy Analysis:(冗余分析)
(第一组原始变量总方差中由本组变式代表的比例)
Proportion of Variance of Set-1 Explained by Its Own Can. Var. Prop Var
CV1-1 .584
CV1-2 .416
(第一组原始变量总方差中由第二组的变式所解释的比例)
Proportion of Variance of Set-1 Explained by Opposite Can.Var. Prop Var
CV2-1 .195
CV2-2 .000
(第二组原始变量总方差中由本组变式代表的比例)
Proportion of Variance of Set-2 Explained by Its Own Can. Var. Prop Var
CV2-1 .780
CV2-2 .053
(第二组原始变量总方差中由第一组的变式所解释的比例)
Proportion of Variance of Set-2 Explained by Opposite Can. Var. Prop Var
CV1-1 .261
CV1-2 .000
------ END MATRIX -----
另外,在数据表中还输出了以下结果:
s1_cv001:第一组的第一个典型变量;
s2_cv001:第二组的第一个典型变量;
s1_cv002:第一组的第二个典型变量;
s2_cv002:第二组的第二个典型变量;
数据分析咨询请扫描二维码
在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30