【spss典型相关分析】数学建模__SPSS_典型相关分析
典型相关分析
在对经济问题的研究和管理研究中,不仅经常需要考察两个变量之间的相关程度,而且还经常需要考察多个变量与多个变量之间即两组变量之间的相关性。典型相关分析就是测度两组变量之间相关程度的一种多元统计方法。
典型相关分析计算步骤
(一)根据分析目的建立原始矩阵 原始数据矩阵
?x11?x21
?
????xn1
x12x2xn2
?x1p?x2p?
?xnp
y11y21yn1
y12y22yn2
y1q??y2q??
??
?
?ynq???
(二)对原始数据进行标准化变化并计算相关系数矩阵
?R11
R = ?
?R21R12?
R22??
?为第一组变量其中R11,R22分别为第一组变量和第二组变量的相关系数阵,R12= R21
和第二组变量的相关系数
(三)求典型相关系数和典型变量
?1?1?1?1
计算矩阵A?R11R12R22R21以及矩阵B?R22R21R11R12的特征值和特征向量,分
别得典型相关系数和典型变量。
(四)检验各典型相关系数的显著性
第五节 利用SPSS进行典型相关分析
第一步,录入原始数据,如下表:X1 X2 X3 X4 X5 分别代表多孩率、综合节育率、初中及以上受教育程度的人口比例、人均国民收入和城镇人口比例。
第二步,调用CANCORR程序。
1、点击“Files→New→Syntax”打开如下对话框。
2、输入调用命令程序及定义典型相关分析变量组的命令。如图
输入时要注意“Canonical correlation.sps”程序所在的根目录,注意变量组的格式和空格。
第三步,执行程序。用光标选择这些命令,使其图黑,再点击运行键有典型相关分析结果。 ,即可得到所
输出结果
1
输出结果
2
主要结果的解释:
第一组变量相关系数
Correlations for Set-1
X1 X2
X1 1.0000 -.7610
X2 -.7610 1.0000
第二组变量相关系数
Correlations for Set-2
X3 X4 X5
X3 1.0000 .7712 .8488
X4 .7712 1.0000 .8777
X5 .8488 .8777 1.0000
第一组与第二组变量之间的相关系数
Correlations Between Set-1 and Set-2 X3 X4 X5
X1 -.5418 -.4528 -.4534
X2 .2929 .2528 .2447
典型相关系数
Canonical Correlations
1 .578
2 .025
维度递减检验结果(降维检验)
Test that remaining correlations are zero: Wilk's Chi-SQ DF Sig. 1 .666 10.584 6.000 .102 2 .999 .017 2.000 .992
标准化典型系数—第一组
Standardized Canonical Coefficients for Set-1 1 2
X1 -1.319 .797
X2 -.486 1.463
粗系数—第一组(没有标准化的,作者注) Raw Canonical Coefficients for Set-1 1 2
X1 -.131 .079
X2 -.091 .275
_
标准化典型系数—第二组
Standardized Canonical Coefficients for Set-2
1 2
X3 .997 -.261
X4 .292 2.075
X5 -.274 -1.743
粗系数—第二组(没有标准化的,作者注)
Raw Canonical Coefficients for Set-2
1 2
X3 .086 -.023
X4 .000 .002
X5 -.017 -.107
典型负载系数(结构相关系数:典型变量与原始变量之间的相关系数)第一组 Canonical Loadings for Set-1
1 2
X1 -.949 -.316
X2 .517 .856
交叉负载系数(某一组中的典型变量与另外一组的原始变量之间的相关系数)—第一组原始变量
Cross Loadings for Set-1
1 2
X1 -.548 -.008
X2 .299 .022
典型负载系数(结构相关系数:典型变量与原始变量之间的相关系数)第二组 Canonical Loadings for Set-2
1 2
X3 .990 -.140
X4 .821 .344
X5 .829 -.143
交叉负载系数(某一组中的典型变量与另外一组的原始变量之间的相关系数)—第二组原始变量
Cross Loadings for Set-2
1 2
X3 .572 -.004
X4 .474 .009
X5 .479 -.004
Redundancy Analysis:(冗余分析)
(第一组原始变量总方差中由本组变式代表的比例)
Proportion of Variance of Set-1 Explained by Its Own Can. Var. Prop Var
CV1-1 .584
CV1-2 .416
(第一组原始变量总方差中由第二组的变式所解释的比例)
Proportion of Variance of Set-1 Explained by Opposite Can.Var. Prop Var
CV2-1 .195
CV2-2 .000
(第二组原始变量总方差中由本组变式代表的比例)
Proportion of Variance of Set-2 Explained by Its Own Can. Var. Prop Var
CV2-1 .780
CV2-2 .053
(第二组原始变量总方差中由第一组的变式所解释的比例)
Proportion of Variance of Set-2 Explained by Opposite Can. Var. Prop Var
CV1-1 .261
CV1-2 .000
------ END MATRIX -----
另外,在数据表中还输出了以下结果:
s1_cv001:第一组的第一个典型变量;
s2_cv001:第二组的第一个典型变量;
s1_cv002:第一组的第二个典型变量;
s2_cv002:第二组的第二个典型变量;
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16