全球“大数据战略”面面观
为何要把大数据放到“国家战略”的高度?这是因为,大数据开启了一次重大的时代转型,改变了我们的生活及理解世界的方式。
大数据首先是“大”,是海量数据。国际数据公司估计,全球2012年产生数据总量约2.8泽字节。泽是10的21次方,也就是10万亿亿,2.8泽字节相当于3000多亿部时长两小时的高清电影,连着播放7000多万年也放不完。该公司还预测,全球数据量每隔两年翻一番,2020年达到40泽字节。
但“大”只是表象,大数据的本质是以崭新的思维和技术去分析海量数据,揭示其中隐藏的人类行为等模式,由此可以创新产品、服务和管理,也可以预测未来的趋势。因此,国家、企业甚至每个人,都能从大数据中受益。
“智慧城市”就是大数据服务于民的一个范例。在欧洲,西班牙古老的港口城市桑坦德被选为欧盟试点城市。在面积约为6平方公里的桑坦德市中心,近1万个传感器每隔几分钟把城市的交通、天气、行人动作等数据传到数据中心,公交车发送自己的位置、速度及周边环境,居民也可以成为“人体传感器”,通过智能手机应用程序上传实时数据。
现在,桑坦德市的数据中心能通知市政当局路灯的状况,并根据需要自动调节路灯的亮度。市民通过一个名为“城市脉搏”的手机应用就可以获得整个城市的相关信息。
通过大数据开放来提升政务服务。韩国的“智慧首尔地图”就是各国智慧城市发展策略中的代表。通过一系列的手机应用,市民可以查询残疾人设施、首尔市免费无线网络热点、公厕、餐饮及行政信息。
在2011年,首尔就提出了“智慧首尔2015”计划,目标是到2015年让首尔成为世界上最方便使用智能技术的城市,建成适应未来生活的基础设施、成为有创造力的智慧经济都市。
“智慧首尔2015”计划指出,公共数据已成为具有社会和经济价值的重要国家资产。韩国未来创造科学部预测,大数据产业到2017年可以创造1000个企业,创造5万个以上就业岗位。
大数据被视为创新和生产力提升的下一个前沿。对数据资源的开发利用能力已成为国家竞争力的要素之一,也是国家整体实力的重要体现。由此,数据经济、数据管理、数据强国等新概念应运而生,各国政府也加强对大数据的扶持,并上升到国家战略高度。
美国率先将大数据从商业概念上升到国家战略。2012年3月,美国政府公布了2亿美元的《大数据研究发展计划》,提出通过提高美国从大型复杂数据中提取知识和观点的能力,加快科学与工程研究步伐,加强国家安全。同年11月公布的具体研发计划涉及各级政府、私企及科研机构的多个大数据研究项目。
在日本,安倍内阁于2013年6月发布了“创建最尖端IT国家宣言”,全面阐述了2013年至2020年间以发展开放公共数据和大数据为核心的国家战略,强调“提升日本竞争力,大数据应用不可或缺”。
在英国,政府在2013年注资1.89亿英镑(约3亿美元)发展大数据项目。同年发布的《英国农业技术战略》更是强调英国今后对农业技术的投资将集中在大数据上,让英国的农业科技商业化,将英国打造成农业信息学世界强国。
在大数据红遍全球的背景下,无论是领先发展的欧美,还是迎头赶上的东亚,发展大数据除了加强基础设施建设、加快普及高速互联网,更重在推动数据开放、优先发展推进与民生保障服务相关的数据。
根据中国国务院印发的《促进大数据发展行动纲要》,国家发展改革委有关负责人日前表示,2018年以前,中国要建成国家政府数据统一开放门户,推进政府和公共部门数据资源统一汇聚和集中向社会开放,实现面向社会的政府数据资源一站式开放服务。
新加坡是世界网速最快的国家之一,在2011年6月启用了政府分享公开数据平台,开放了来自60多个公共机构的近9000个数据库。利用开放数据,企业和有关部门已开发了100多项应用,涉及停车信息、公厕甚至野猫管理等。市民只需一个名为“新加坡通行证”的密码,就可以享受相关电子政府服务的便利。
在南半球的澳大利亚,政府信息管理办公室在2013年8月发布了公共服务大数据战略,以“数据属于国有资产,从设计着手保护隐私、数据完整性与程序透明度”等原则出发,推动公共行业利用大数据分析进行服务改革。澳大利亚政府的开放数据平台,目前已涵盖100多个机构部门的1000多个数据库,向公众提供数据下载上的便利。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21