
如何在R语言中使用Logistic回归模型
在实际应用中,Logistic模型主要有三大用途:
1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素;
2)用于预测,可以预测某种情况发生的概率或可能性大小;
3)用于判别,判断某个新样本所属的类别。
Logistic模型实际上是一种回归模型,但这种模型又与普通的线性回归模型又有一定的区别:
1)Logistic回归模型的因变量为二分类变量;
2)该模型的因变量和自变量之间不存在线性关系;
3)一般线性回归模型中需要假设独立同分布、方差齐性等,而Logistic回归模型不需要;
4)Logistic回归没有关于自变量分布的假设条件,可以是连续变量、离散变量和虚拟变量;
5)由于因变量和自变量之间不存在线性关系,所以参数(偏回归系数)使用最大似然估计法计算。
下面简单介绍该模型的理论知识,主要参考《统计建模与R软件》:
应用:
接下来使用R语言实现Logistic模型的应用,仍然使用《Logistic回归模型——方法与应用》书中的案例数据。该数据的应变量表示高中生是否进入大学,自变量包含性别(GENDER)、高中类型(KEYSCH,是否为重点中学)和高中平均成绩(MEANGR)。
接下来列出文中所需R语言包:
foreign包用于导入SPSS数据集;
sjmisc包用于实现Logistic模型的拟合优度检验
pROC包用于绘制模型的ROC曲线
#读取数据
发现原本为离散的变量COLLEGE、KEYSCH和GENDER成了数值变量,需要重新将这些变量设置为因子变量。
#数据初探:
#将数据拆分为训练数据集和测试数据集
本文对Logistic模型的应用使用stats包中自带的glm()函数,下面看看
glm()函数的使用方法:
glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = list(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)
formula指定模型的因变量和自变量,类似于y~x1+x2+x3的形式;
family指定模型的连接函数和误差函数;
data指定要分析的数据框;
weights模型拟合中指定先验权重;
subset指定数据子集用于模型拟合;
na.action指定缺失值的处理办法,默认跳过缺失值;
start用于指定参数估计的初始值;
control为一个列表,指定广义线性模型的收敛度,最大迭代次数等;
#建模
由参数估计的结果可知,截距项和三个自变量是非常显著的。
从而模型可以写成如下形式:
由summary()结果的最下方Residual deviance实际上就是-2Log L(-2倍的似然对数)对应模型的显著性检验。也可以查看更详细的Residual deviance过程:
很明显,模型卡方统计量通过显著性检验(P值远远小于0.05)。
模型的拟合优度检验:
通过比较模型的预测值与实际值之间的差异情况来进行检验,如果预测值域实际值越接近,则说明模型的拟合优度越佳。
主要的拟合优度评价指标有偏差卡方检验、皮尔逊卡方检验和HL统计量检验。其中前两种检验适合模型中只有离散的自变量,而后一种适合模型中包含连续的自变量。拟合优度检验的原假设为“模型的预测值与实际值不存在差异”。
下面使用sjmisc包中的hoslem_gof函数实现以上模型的H-L统计量检验:
很明显,p>0.05,说明H-L检验不显著,接受拟合优度的原假设:模型的预测值与实际值不存在差异。
在实际应用中,最理想的情况是希望模型卡方统计量显著(Residual deviance显著),而模型拟合优度不显著(HL统计量不显著)。如果Residual deviance不显著(自变量对应变量没有很好的解释)或HL统计量显著(模型不能很好的拟合数据),则说明模型可能存在某些问题,需要重新设定模型。
从上面的HL检验和模型卡方统计量结果可知,该模型是比较理想的。
#我们一般不会直接对模型的偏回归系数作解释,而是使用优势比解释各个自变量。下面看一下各回归系数的置信区间和优势比的置信区间。
#模型预测
由于Logistic回归模型无法直接预测新样本属于哪个类别,这里使用主观概念,如果预测概率值小于等于0.5,则预判COLLEGE为0(未考取大学)。经计算模型的预测准确率为80%。
还有一种可视化的方法衡量模型的优劣,即ROC曲线,该曲线的横坐标和纵坐标各表示1-反例的覆盖率和正例的覆盖率。
这里的AUC为ROC曲线下方的面积。一般AUC大于0.75就能够说明模型是比较合理的了。
总结:文中所用到的包和函数
foreign包
read.spss()
stats包
glm()
summary()
confint()
predict()
transform()
cbind()
table()
sjmisc包
hoslem()
pROC包
roc()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10