
如何在R语言中使用Logistic回归模型
在实际应用中,Logistic模型主要有三大用途:
1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素;
2)用于预测,可以预测某种情况发生的概率或可能性大小;
3)用于判别,判断某个新样本所属的类别。
Logistic模型实际上是一种回归模型,但这种模型又与普通的线性回归模型又有一定的区别:
1)Logistic回归模型的因变量为二分类变量;
2)该模型的因变量和自变量之间不存在线性关系;
3)一般线性回归模型中需要假设独立同分布、方差齐性等,而Logistic回归模型不需要;
4)Logistic回归没有关于自变量分布的假设条件,可以是连续变量、离散变量和虚拟变量;
5)由于因变量和自变量之间不存在线性关系,所以参数(偏回归系数)使用最大似然估计法计算。
下面简单介绍该模型的理论知识,主要参考《统计建模与R软件》:
应用:
接下来使用R语言实现Logistic模型的应用,仍然使用《Logistic回归模型——方法与应用》书中的案例数据。该数据的应变量表示高中生是否进入大学,自变量包含性别(GENDER)、高中类型(KEYSCH,是否为重点中学)和高中平均成绩(MEANGR)。
接下来列出文中所需R语言包:
foreign包用于导入SPSS数据集;
sjmisc包用于实现Logistic模型的拟合优度检验
pROC包用于绘制模型的ROC曲线
#读取数据
发现原本为离散的变量COLLEGE、KEYSCH和GENDER成了数值变量,需要重新将这些变量设置为因子变量。
#数据初探:
#将数据拆分为训练数据集和测试数据集
本文对Logistic模型的应用使用stats包中自带的glm()函数,下面看看
glm()函数的使用方法:
glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = list(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)
formula指定模型的因变量和自变量,类似于y~x1+x2+x3的形式;
family指定模型的连接函数和误差函数;
data指定要分析的数据框;
weights模型拟合中指定先验权重;
subset指定数据子集用于模型拟合;
na.action指定缺失值的处理办法,默认跳过缺失值;
start用于指定参数估计的初始值;
control为一个列表,指定广义线性模型的收敛度,最大迭代次数等;
#建模
由参数估计的结果可知,截距项和三个自变量是非常显著的。
从而模型可以写成如下形式:
由summary()结果的最下方Residual deviance实际上就是-2Log L(-2倍的似然对数)对应模型的显著性检验。也可以查看更详细的Residual deviance过程:
很明显,模型卡方统计量通过显著性检验(P值远远小于0.05)。
模型的拟合优度检验:
通过比较模型的预测值与实际值之间的差异情况来进行检验,如果预测值域实际值越接近,则说明模型的拟合优度越佳。
主要的拟合优度评价指标有偏差卡方检验、皮尔逊卡方检验和HL统计量检验。其中前两种检验适合模型中只有离散的自变量,而后一种适合模型中包含连续的自变量。拟合优度检验的原假设为“模型的预测值与实际值不存在差异”。
下面使用sjmisc包中的hoslem_gof函数实现以上模型的H-L统计量检验:
很明显,p>0.05,说明H-L检验不显著,接受拟合优度的原假设:模型的预测值与实际值不存在差异。
在实际应用中,最理想的情况是希望模型卡方统计量显著(Residual deviance显著),而模型拟合优度不显著(HL统计量不显著)。如果Residual deviance不显著(自变量对应变量没有很好的解释)或HL统计量显著(模型不能很好的拟合数据),则说明模型可能存在某些问题,需要重新设定模型。
从上面的HL检验和模型卡方统计量结果可知,该模型是比较理想的。
#我们一般不会直接对模型的偏回归系数作解释,而是使用优势比解释各个自变量。下面看一下各回归系数的置信区间和优势比的置信区间。
#模型预测
由于Logistic回归模型无法直接预测新样本属于哪个类别,这里使用主观概念,如果预测概率值小于等于0.5,则预判COLLEGE为0(未考取大学)。经计算模型的预测准确率为80%。
还有一种可视化的方法衡量模型的优劣,即ROC曲线,该曲线的横坐标和纵坐标各表示1-反例的覆盖率和正例的覆盖率。
这里的AUC为ROC曲线下方的面积。一般AUC大于0.75就能够说明模型是比较合理的了。
总结:文中所用到的包和函数
foreign包
read.spss()
stats包
glm()
summary()
confint()
predict()
transform()
cbind()
table()
sjmisc包
hoslem()
pROC包
roc()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03