如何在R语言中使用Logistic回归模型
在实际应用中,Logistic模型主要有三大用途:
1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素;
2)用于预测,可以预测某种情况发生的概率或可能性大小;
3)用于判别,判断某个新样本所属的类别。
Logistic模型实际上是一种回归模型,但这种模型又与普通的线性回归模型又有一定的区别:
1)Logistic回归模型的因变量为二分类变量;
2)该模型的因变量和自变量之间不存在线性关系;
3)一般线性回归模型中需要假设独立同分布、方差齐性等,而Logistic回归模型不需要;
4)Logistic回归没有关于自变量分布的假设条件,可以是连续变量、离散变量和虚拟变量;
5)由于因变量和自变量之间不存在线性关系,所以参数(偏回归系数)使用最大似然估计法计算。
下面简单介绍该模型的理论知识,主要参考《统计建模与R软件》:
应用:
接下来使用R语言实现Logistic模型的应用,仍然使用《Logistic回归模型——方法与应用》书中的案例数据。该数据的应变量表示高中生是否进入大学,自变量包含性别(GENDER)、高中类型(KEYSCH,是否为重点中学)和高中平均成绩(MEANGR)。
接下来列出文中所需R语言包:
foreign包用于导入SPSS数据集;
sjmisc包用于实现Logistic模型的拟合优度检验
pROC包用于绘制模型的ROC曲线
#读取数据
发现原本为离散的变量COLLEGE、KEYSCH和GENDER成了数值变量,需要重新将这些变量设置为因子变量。
#数据初探:
#将数据拆分为训练数据集和测试数据集
本文对Logistic模型的应用使用stats包中自带的glm()函数,下面看看
glm()函数的使用方法:
glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = list(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)
formula指定模型的因变量和自变量,类似于y~x1+x2+x3的形式;
family指定模型的连接函数和误差函数;
data指定要分析的数据框;
weights模型拟合中指定先验权重;
subset指定数据子集用于模型拟合;
na.action指定缺失值的处理办法,默认跳过缺失值;
start用于指定参数估计的初始值;
control为一个列表,指定广义线性模型的收敛度,最大迭代次数等;
#建模
由参数估计的结果可知,截距项和三个自变量是非常显著的。
从而模型可以写成如下形式:
由summary()结果的最下方Residual deviance实际上就是-2Log L(-2倍的似然对数)对应模型的显著性检验。也可以查看更详细的Residual deviance过程:
很明显,模型卡方统计量通过显著性检验(P值远远小于0.05)。
模型的拟合优度检验:
通过比较模型的预测值与实际值之间的差异情况来进行检验,如果预测值域实际值越接近,则说明模型的拟合优度越佳。
主要的拟合优度评价指标有偏差卡方检验、皮尔逊卡方检验和HL统计量检验。其中前两种检验适合模型中只有离散的自变量,而后一种适合模型中包含连续的自变量。拟合优度检验的原假设为“模型的预测值与实际值不存在差异”。
下面使用sjmisc包中的hoslem_gof函数实现以上模型的H-L统计量检验:
很明显,p>0.05,说明H-L检验不显著,接受拟合优度的原假设:模型的预测值与实际值不存在差异。
在实际应用中,最理想的情况是希望模型卡方统计量显著(Residual deviance显著),而模型拟合优度不显著(HL统计量不显著)。如果Residual deviance不显著(自变量对应变量没有很好的解释)或HL统计量显著(模型不能很好的拟合数据),则说明模型可能存在某些问题,需要重新设定模型。
从上面的HL检验和模型卡方统计量结果可知,该模型是比较理想的。
#我们一般不会直接对模型的偏回归系数作解释,而是使用优势比解释各个自变量。下面看一下各回归系数的置信区间和优势比的置信区间。
#模型预测
由于Logistic回归模型无法直接预测新样本属于哪个类别,这里使用主观概念,如果预测概率值小于等于0.5,则预判COLLEGE为0(未考取大学)。经计算模型的预测准确率为80%。
还有一种可视化的方法衡量模型的优劣,即ROC曲线,该曲线的横坐标和纵坐标各表示1-反例的覆盖率和正例的覆盖率。
这里的AUC为ROC曲线下方的面积。一般AUC大于0.75就能够说明模型是比较合理的了。
总结:文中所用到的包和函数
foreign包
read.spss()
stats包
glm()
summary()
confint()
predict()
transform()
cbind()
table()
sjmisc包
hoslem()
pROC包
roc()
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21