R文本挖掘之tm包
tm包是R文本挖掘方面不可不知也不可不用的一个package。它提供了文本挖掘中的综合处理功能。如:数据载入,语料库处理,数据预处理,元数据管理以及建立“文档-词条”矩阵。
下面,即从tm包提供的各项功能函数的探索出发,一起开始我们的文本挖掘奇幻之旅。
首先,运行下面的几行代码,即可看到介绍tm包的小品文:Introduction to the tm Package:Text Mining in R(https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf).
install.packages("tm")
library(tm)
vignette("tm")
tm包重要函数初探
数据载入及语料库创建
载入数据的格式要求
tm包支持多种格式的数据。用getreaders()函数可以获得tm包支持的数据文件格式。
library(tm)
## Loading required package: NLP
getReaders()
## [1] "readDOC" "readPDF"
## [3] "readPlain" "readRCV1"
## [5] "readRCV1asPlain" "readReut21578XML"
## [7] "readReut21578XMLasPlain" "readTabular"
## [9] "readTagged" "readXML"
载入数据的方式
tm包中主要管理文件的数据结构称为语料库(Corpus),它表示一系列文档的集合。
语料库又分为动态语料库(Volatile Corpus)和静态语料库(Permanent Corpus)。
动态语料库将作为R对象保存在内存中,可以使用VCorpus()或者Corpus()生成。
而动态语料库则作为R外部文件保存,可以使用PCorpus()函数生成。
先来看一下VCorpus()函数的使用。
VCorpus(x, readerControl = list(reader = reader(x), language = "en"))
as.VCorpus(x)
第一个参数x即文本数据来源。对于as.VCorpus()中的x,指定的是一个R对象;对于VCorpus(),可以使用以下几种方式载入x。
DirSource():从本地文件目录夹导入
VectorSource():输入文本构成的向量
DataframeSource():输入文本构成的data frame
对于第二个参数readerControl,即指定文件类型的对应的读入方式。默认使用tm支持的(即getReaders()中罗列的)一系列函数。language即文件的语言类型。似乎不能支持中文。这个问题稍后解释如何解决。
这里,使用tm包自带的一个数据集进行语料库创建的测试。
DirSource()方式:
txt<-system.file("texts","txt",package = 'tm')
(docs<-Corpus(DirSource(txt,encoding = "UTF-8")))
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 5
VectorSource()方式:
docs<-c("this is a text","And we create a vector.")
VCorpus(VectorSource(docs))
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 2
下面,导入一个数据集『冰与火之歌』全五部(没错,我就是来剧透的~~),作为后面练习的例子。
IceAndSongs<-VCorpus(DirSource(directory = "D:/my_R_workfile/RPROJECT/textming/data/IceAndSongs",encoding = "UTF-8"))
数据导出
将语料库导出至本地硬盘上,可以使用writeCorpus()函数.
writeCorpus(IceAndSongs,path = "D:/my_R_workfile/RPROJECT/textming/data/Corpus")
语料库的查看及提取
可以使用print()和summary()查看语料库的部分信息。而完整信息的提取则需要使用inspect()函数。
inspect(IceAndSongs[1:2])
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 2
##
## [[1]]
## <<PlainTextDocument>>
## Metadata: 7
## Content: chars: 1745859
##
## [[2]]
## <<PlainTextDocument>>
## Metadata: 7
## Content: chars: 2018112
文件太大,而没有打印出来。我们可以使用writeLines()函数进行完全打印查看。
writeLines(as.character(IceAndSongs[[1]]))
对于单个文档的提取,可以类型列表取元素子集一样使用 [[ 操作。
identical(IceAndSongs[[1]],IceAndSongs[["冰与火之歌1.txt"]])
## [1] TRUE
数据转换
创建好语料库之后,一般还需要做进一步的处理,如:消除空格(Whitespace),大小写转换,去除停止词,词干化等。
所有的这些处理都可以使用tm_map()函数,通过map的方式将转化函数应用到每一个文档语料上。
消除空格
IceAndSongs<-tm_map(IceAndSongs,stripWhitespace)
去除数字
IceAndSongs<-tm_map(IceAndSongs,removeNumbers)
去除标点符号
IceAndSongs<-tm_map(IceAndSongs,removePunctuation)
大小写转换
IceAndSongs<-tm_map(IceAndSongs,tolower)
消除停止词
tm包中自带了停止词集。
IceAndSongs<-tm_map(IceAndSongs,removeWords,stopwords("english"))
当然,也可以指定你自己设定的停止词集,将stopwords("english")替换成你自己的停止词集对象即可。
词干化
词干化,即词干提取。指的是去除词缀得到词根的过程─—得到单词最一般的写法。
如以单复数等多种形式存在的词,或多种时态形式存在的同一个词,它们代表的其实是同一个意思。因此需要通过词干化将它们的形式进行统一。
tm_map(IceAndSongs,stemDocument)
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 5
去除特殊字符
for(i in seq(IceAndSongs)){
IceAndSongs[[i]]<-gsub("/"," ",IceAndSongs[[i]])
IceAndSongs[[i]]<-gsub("@"," ",IceAndSongs[[i]])
IceAndSongs[[i]]<-gsub("-"," ",IceAndSongs[[i]])
}
过滤
过滤功能能够选择出符合我们需要的文档。
idx<-meta(IceAndSongs,"id") == "冰与火之歌1.txt"
IceAndSongs[idx]
也可以进行全文搜索匹配。如含有”winter is coming”的文档。
tm_filter(IceAndSongs,FUN = function(x){ any(grep("winter is coming",content(x)))})
元数据管理
元数据指的是对文档进行标签化的附加信息。可以通过meta()函数进行元数据管理。
DublinCore()函数提供了一套介于Simple Dublin Core元数据和tm元数据之间的映射机制,用于获得或设置文档的元数据信息。
DublinCore(IceAndSongs[[1]],tag = "creator") <- "R.R.Martin"
DublinCore(IceAndSongs[[1]])
meta(IceAndSongs[[1]])
以上操作示例主要是针对文档级别的元数据管理。而元数据标签其实对应了两个级别:
整个语料库级别:文档的集合
单个文档级别
而文档级别的标签,可以用于文档分类(classification)。
下面演示一下语料库级别的元数据管理。
meta(IceAndSongs,tag = "test",type = "corpus")<-"test meta"
meta(IceAndSongs,type = "corpus")
创建词条-文档矩阵
词条-文档矩阵是一个非常重要的对象,它是后续建立文本分类,文本聚类等模型的基础。
词条-文档矩阵指的是词条作为行,文档标签作为列的稀疏矩阵。当然,也可以建立“文档-词条矩阵”。对应的两个操作函数为:TermDocumentMatrix()和DocumentTermMatrix().
dtm<-DocumentTermMatrix(IceAndSongs)
inspect(dtm[1:5,100:105])
默认情况下,矩阵的元素是词的频率。而我们还有一个重要参数可以设置。可以将矩阵的元素转化为TF-IDF值。
dtm_2<-DocumentTermMatrix(IceAndSongs,
control = list(removePunctuation = TRUE,stopwords = FALSE,weighting =
function(x)weightTfIdf(x,normalize = TRUE)))
inspect(dtm[1:5,10:15])
对文档词条矩阵操作
tm包提供的文档-词条矩阵操作有:词频过滤;词语之间的相关性计算;去除稀疏词等。
findFreqTerms(dtm,10)
findAssocs(dtm,"winter",0.5)
inspect(removeSparseTerms(dtm,0.4))
字典
字典是一个字符集。它可以作为一个控制参数传入DocumentTermMatrix(),从而选择我们需要的词条建立文档-词条矩阵。
inspect(DocumentTermMatrix(IceAndSongs,
list(dictionary = c("winter","power","ice"))))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31