京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用Python进行线性回归
线性回归是最简单同时也是最常用的一个统计模型。线性回归具有结果易于理解,计算量小等优点。如果一个简单的线性回归就能取得非常不错的预测效果,那么就没有必要采用复杂精深的模型了。
今天,我们一起来学习使用Python实现线性回归的几种方法:
通过公式编写矩阵运算程序;
通过使用机器学习库sklearn;
通过使用statmodels库。
这里,先由简至繁,先使用sklearn实现,再讲解矩阵推导实现。
1.使用scikit-learn进行线性回归
设置工作路径
#
import os
os.getcwd()
os.chdir('D:\my_python_workfile\Project\Writting')
加载扩展包
import pandas as pd
import numpy as np
import pylab as pl
import matplotlib.pyplot as plt
载入数据并可视化分析
这里,为了简单起见,使用sklearn中自带的数据集鸢尾花数据iris进行分析,探索『花瓣宽』和『花瓣长』之间的线性关系。
from sklearn.datasets import load_iris
# load data
iris = load_iris()
# Define a DataFrame
df = pd.DataFrame(iris.data, columns = iris.feature_names)
# take a look
df.head()
#len(df)

# correlation
df.corr()


# rename the column name
df.columns = ['sepal_length','sepal_width','petal_length','petal_width']
df.columns
Index([u'sepal_length', u'sepal_width', u'petal_length', u'petal_width'], dtype='object')
plt.matshow(df.corr())

由上面分析可知,花瓣长sepal length和花瓣宽septal width有着非常显著的相关性。
下面,通过线性回归进一步进行验证。
# save image
fig,ax = plt.subplots(nrows = 1, ncols = 1)
ax.matshow(df.corr())
fig.savefig('./image/iris_corr.png')
建立线性回归模型
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
lr = LinearRegression()
X = df[['petal_length']]
y = df['petal_width']
lr.fit(X,y)
# print the result
lr.intercept_,lr.coef_
(-0.3665140452167297, array([ 0.41641913]))
# get y-hat
yhat = lr.predict(X = df[['petal_length']])
# MSE
mean_squared_error(df['petal_width'],yhat)
# lm plot
plt.scatter(df['petal_length'],df['petal_width'])
plt.plot(df['petal_length'],yhat)
#save image
plt.savefig('./image/iris_lm_fit.png')
2.使用statmodels库
#import statsmodels.api as sm
import statsmodels.formula.api as sm
linear_model = sm.OLS(y,X)
results = linear_model.fit()
results.summary()
OLS Regression Results

3.使用公式推导
线性回归,即是使得如下目标函数最小化:

使用最小二乘法,不难得到β的估计:

从而,我们可以根据此公式,编写求解β^的函数。
from numpy import *
#########################
# 定义相应的函数进行矩阵运算求解。
def standRegres(xArr, yArr):
xMat = mat(xArr)
yMat = mat(yArr).T
xTx = xMat.T * xMat
if linalg.det(xTx) == 0.0:
print "this matrix is singular, cannot do inverse!"
return NA
else :
ws = xTx.I * (xMat.T * yMat)
return ws
# test
x0 = np.ones((150,1))
x0 = pd.DataFrame(x0)
X0 = pd.concat([x0,X],axis = 1)
standRegres(X0,y)
matrix([[-0.36651405],
[ 0.41641913]])
结果一致。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24