Python中的线性代数运算
这里,为了熟悉Python语言的特性,我们采用一种最原始的方式去定义线性代数运算的相关函数。如果是真实应用场景,则直接使用NumPy的函数即可。
1.向量
创建一个向量
我们可以把Python中的向量理解为有限维空间中的点。
height_weight_age = [70,170,40]
grades = [95,80,75,62]
向量运算
#### 加法定义——两个向量
def vector_add(v,w):
"""add coresponding elements"""
return [v_i + w_i
for v_i,w_i in zip(v,w)]
#### 减法定义
def vector_substract(v,w):
"""substracts coresponding elements"""
return [v_i - w_i
for v_i,w_i in zip(v,w)]
#### 向量加法——多个向量(list of vectors)
####### method 1:
def vector_sum(vectors):
"""sums of all coresponding elements"""
result = vectors[0]
for vector in vectors[1:]:
result = vector_add(result,vector)
return result
######## mothod 2:
def vector_sum(vecotrs):
return reduce(vector_add,vectors)
######## mothod 3:
from functools import partial
vector_sum = partial(reduce,vector_add)
### 向量的数乘运算
def scalar_multiply(c,v):
"""c is a number,v is a vector"""
return [c * v_i for v_i in v]
### 向量的均值运算
def vector_mean(vectors):
"""compute the vector whose i-th element is the mean of
the i-th elements of the input vectors"""
n = len(vecotrs)
return scalar_multiply(1/n,vector_sum())
### 向量的点乘
def dot(v,w):
return sum(v_i * w_i
for v_i,w_i in zip(v,w))
### 向量的平房和
def sum_of_squares(v):
"""v_1*v_1+v_2*v_2+...+v_n*v_n"""
return dot(v,v)
### 向量的模
import math
def magnitude(v):
return math.sqrt(sum_of_squares(v))
### 向量的距离
##### method 1:
def squared_distance(v,w):
""""""
return sum_of_squares(vector_substract(v,w))
##### method 2:
def distance(v,w):
return magnitude(vector_substract(v,w))
##### method 3:
def distance(v,w):
return math.sqrt(squared_distance(v,w))
2.矩阵
矩阵是一个二维的数字集合。我们可以通过列表的列表来表达一个矩阵,这样,内层列表是等长的,并且每个内层列表表达矩阵的一行。
### 定义一个向量
A = [[1,2,3],
[4,5,6]]
B = [[1,2],
[3,4],
[7,8]]
### 获得矩阵的行数和列数
def shape(A):
num_rows = len(A)
num_cols = len(A[0]) if A else 0
return num_rows,num_cols
### 提取某一行
def get_row(A,i):
return A[i]
###提取某一列
def get_column(A,j):
return [A_i[j] # j-th element of row A_i
for A_i in A] # for each row in A
### 定制特殊矩阵生成函数:如单位矩阵
def make_matrix(num_rows,num_cols,entry_fn):
"""return a matrix whose (i,j)-th entry is entry_fn(i,j)"""
return [[entry_fn(i,j)
for j in range(num_cols)]
for i in range(num_rows)]
###
def is_diagonal(i,j):
return 1 if i==j else 0
make_matrix(5,5,is_diagonal)
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10