Python中的线性代数运算
这里,为了熟悉Python语言的特性,我们采用一种最原始的方式去定义线性代数运算的相关函数。如果是真实应用场景,则直接使用NumPy的函数即可。
1.向量
创建一个向量
我们可以把Python中的向量理解为有限维空间中的点。
height_weight_age = [70,170,40]
grades = [95,80,75,62]
向量运算
#### 加法定义——两个向量
def vector_add(v,w):
"""add coresponding elements"""
return [v_i + w_i
for v_i,w_i in zip(v,w)]
#### 减法定义
def vector_substract(v,w):
"""substracts coresponding elements"""
return [v_i - w_i
for v_i,w_i in zip(v,w)]
#### 向量加法——多个向量(list of vectors)
####### method 1:
def vector_sum(vectors):
"""sums of all coresponding elements"""
result = vectors[0]
for vector in vectors[1:]:
result = vector_add(result,vector)
return result
######## mothod 2:
def vector_sum(vecotrs):
return reduce(vector_add,vectors)
######## mothod 3:
from functools import partial
vector_sum = partial(reduce,vector_add)
### 向量的数乘运算
def scalar_multiply(c,v):
"""c is a number,v is a vector"""
return [c * v_i for v_i in v]
### 向量的均值运算
def vector_mean(vectors):
"""compute the vector whose i-th element is the mean of
the i-th elements of the input vectors"""
n = len(vecotrs)
return scalar_multiply(1/n,vector_sum())
### 向量的点乘
def dot(v,w):
return sum(v_i * w_i
for v_i,w_i in zip(v,w))
### 向量的平房和
def sum_of_squares(v):
"""v_1*v_1+v_2*v_2+...+v_n*v_n"""
return dot(v,v)
### 向量的模
import math
def magnitude(v):
return math.sqrt(sum_of_squares(v))
### 向量的距离
##### method 1:
def squared_distance(v,w):
""""""
return sum_of_squares(vector_substract(v,w))
##### method 2:
def distance(v,w):
return magnitude(vector_substract(v,w))
##### method 3:
def distance(v,w):
return math.sqrt(squared_distance(v,w))
2.矩阵
矩阵是一个二维的数字集合。我们可以通过列表的列表来表达一个矩阵,这样,内层列表是等长的,并且每个内层列表表达矩阵的一行。
### 定义一个向量
A = [[1,2,3],
[4,5,6]]
B = [[1,2],
[3,4],
[7,8]]
### 获得矩阵的行数和列数
def shape(A):
num_rows = len(A)
num_cols = len(A[0]) if A else 0
return num_rows,num_cols
### 提取某一行
def get_row(A,i):
return A[i]
###提取某一列
def get_column(A,j):
return [A_i[j] # j-th element of row A_i
for A_i in A] # for each row in A
### 定制特殊矩阵生成函数:如单位矩阵
def make_matrix(num_rows,num_cols,entry_fn):
"""return a matrix whose (i,j)-th entry is entry_fn(i,j)"""
return [[entry_fn(i,j)
for j in range(num_cols)]
for i in range(num_rows)]
###
def is_diagonal(i,j):
return 1 if i==j else 0
make_matrix(5,5,is_diagonal)
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31