
Python中的线性代数运算
这里,为了熟悉Python语言的特性,我们采用一种最原始的方式去定义线性代数运算的相关函数。如果是真实应用场景,则直接使用NumPy的函数即可。
1.向量
创建一个向量
我们可以把Python中的向量理解为有限维空间中的点。
height_weight_age = [70,170,40]
grades = [95,80,75,62]
向量运算
#### 加法定义——两个向量
def vector_add(v,w):
"""add coresponding elements"""
return [v_i + w_i
for v_i,w_i in zip(v,w)]
#### 减法定义
def vector_substract(v,w):
"""substracts coresponding elements"""
return [v_i - w_i
for v_i,w_i in zip(v,w)]
#### 向量加法——多个向量(list of vectors)
####### method 1:
def vector_sum(vectors):
"""sums of all coresponding elements"""
result = vectors[0]
for vector in vectors[1:]:
result = vector_add(result,vector)
return result
######## mothod 2:
def vector_sum(vecotrs):
return reduce(vector_add,vectors)
######## mothod 3:
from functools import partial
vector_sum = partial(reduce,vector_add)
### 向量的数乘运算
def scalar_multiply(c,v):
"""c is a number,v is a vector"""
return [c * v_i for v_i in v]
### 向量的均值运算
def vector_mean(vectors):
"""compute the vector whose i-th element is the mean of
the i-th elements of the input vectors"""
n = len(vecotrs)
return scalar_multiply(1/n,vector_sum())
### 向量的点乘
def dot(v,w):
return sum(v_i * w_i
for v_i,w_i in zip(v,w))
### 向量的平房和
def sum_of_squares(v):
"""v_1*v_1+v_2*v_2+...+v_n*v_n"""
return dot(v,v)
### 向量的模
import math
def magnitude(v):
return math.sqrt(sum_of_squares(v))
### 向量的距离
##### method 1:
def squared_distance(v,w):
""""""
return sum_of_squares(vector_substract(v,w))
##### method 2:
def distance(v,w):
return magnitude(vector_substract(v,w))
##### method 3:
def distance(v,w):
return math.sqrt(squared_distance(v,w))
2.矩阵
矩阵是一个二维的数字集合。我们可以通过列表的列表来表达一个矩阵,这样,内层列表是等长的,并且每个内层列表表达矩阵的一行。
### 定义一个向量
A = [[1,2,3],
[4,5,6]]
B = [[1,2],
[3,4],
[7,8]]
### 获得矩阵的行数和列数
def shape(A):
num_rows = len(A)
num_cols = len(A[0]) if A else 0
return num_rows,num_cols
### 提取某一行
def get_row(A,i):
return A[i]
###提取某一列
def get_column(A,j):
return [A_i[j] # j-th element of row A_i
for A_i in A] # for each row in A
### 定制特殊矩阵生成函数:如单位矩阵
def make_matrix(num_rows,num_cols,entry_fn):
"""return a matrix whose (i,j)-th entry is entry_fn(i,j)"""
return [[entry_fn(i,j)
for j in range(num_cols)]
for i in range(num_rows)]
###
def is_diagonal(i,j):
return 1 if i==j else 0
make_matrix(5,5,is_diagonal)
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08