R文本分类之RTextTools
古有曹植七步成诗,而RTextTools是一款让你可以在十步之内实现九种主流的机器学习分类器模型的文本分类开发包。
它集成了(或者说支持)如下算法相关的包:
支持向量机(Support Vector Machine from e1071)
glmnet(一个非常流行的用于变量选择的R包,俗称kaggle竞赛“三驾马车”之一)
最大熵模型(maximum entropy from maxent)
大规模线性判别(scaled linear discriminant,slda)
装袋算法(bagging from ipred)
提升算法(boosting from caTools)
随机森林(random forest from randomForest)
神经网络(neural networks from nnet)
回归树(regression tree from tree)
RTextTools有着不可不学的三大理由:
首先,RTextTools的设计哲学在于易学与灵活。从而,让没有任何R编程经验的社会科学研究者也能轻松实现高端的机器学习算法;并且,让经验老道的R用户充分发挥R的威力,与其他相关的包结合,如:文本预处理方面的tm包,实现LDA主题模型的topicmodels包等,实现高难度的模型,并且充分提高模型的精度等。
其次,RTextTools提供了从数据载入,数据清洗,到模型评价的所有功能,并且,实现的函数非常简单易记。即所谓的『一条龙服务』。
最后,RTextTools还可以实现结构化数据的分类问题。也就是说,它可以像普通的机器学习包caret那样使用。
下面,让我们一起来见证一下RTextTools是如何在十步之内演绎文本分类这一高端技术活的。
文本分类step-by-step
1.创建矩阵
首先,载入一个自带的测试数据集:data(USCongress)。由于RTextTools集成了tm包的功能,所以tm包在文本预处理方面的功能,如去除空格、移除稀疏词、移除停止词、词干化等功能,都可以轻松实现。
# 创建一个文档-词项矩阵doc_matrix<-create_matrix(USCongress$text,language="english",removeNumbers=TRUE,stemWords=TRUE,removeSparseTerms=.998)
2.创建容器(Container)
创建好文档-词项矩阵以后,下一步要做的就是对矩阵进行训练集/测试集的划分了。RTextTools中的容器(Container)概念,使得人们不必两次读入数据,而将训练集和测试集一并读入,在容器内做区分即可。
既然我们是有监督的分类算法实现,当然不能忘了指定因变量(即类别标签)。在我们的测试数据集中,类别标签为USCongress$major。
注意:类别标签一定要为数值型!
这里,virgin =参数的设置影响到后续模型结果的分析解读。virgin = FALSE意味着告诉R,我们的测试集是有真实的类别标签的。
3.训练模型
数据已经准备妥当,下面就可以进行模型的训练了。前面提到的九个机器学习算法的训练,只需要写成一个向量,作为参数传入train_model()函数即可同时轻松实现各种高大上的分类器模型训练。
我们来看一下train_model()函数的使用方法。
参数的设置也很简单。如果你实在懒得设置,不妨先使用默认的参数试一试。
SVM<-train_model(container,"SVM")GLMNET<-train_model(container,"GLMNET")MAXENT<-train_model(container,"MAXENT")SLDA<-train_model(container,"SLDA")BOOSTING<-train_model(container,"BOOSTING")BAGGING<-train_model(container,"BAGGING")RF<-train_model(container,"RF")#NNET <- train_model(container,"NNET")TREE<-train_model(container,"TREE")
4.使用训练好的模型进行文本分类
train_model()函数会返回一个训练好的模型对象,我们可以把该对象作为参数传给classify_model()函数,进行测试集的分类。
SVM_CLASSIFY<-classify_model(container,SVM)GLMNET_CLASSIFY<-classify_model(container,GLMNET)MAXENT_CLASSIFY<-classify_model(container,MAXENT)SLDA_CLASSIFY<-classify_model(container,SLDA)BOOSTING_CLASSIFY<-classify_model(container,BOOSTING)BAGGING_CLASSIFY<-classify_model(container,BAGGING)RF_CLASSIFY<-classify_model(container,RF)#NNET_CLASSIFY <- classify_model(container, NNET)TREE_CLASSIFY<-classify_model(container,TREE)
5.结果分析
create_analytics()函数提供了对测试集的分类结果的四种解读:从标签出发;从算法对比出发;从角度文档出发;以及整体评价。
analytics<-create_analytics(container,cbind(SVM_CLASSIFY,SLDA_CLASSIFY,BOOSTING_CLASSIFY,BAGGING_CLASSIFY,RF_CLASSIFY,GLMNET_CLASSIFY,TREE_CLASSIFY,MAXENT_CLASSIFY))
6.测试分类器准确率(accuracy)
create_analytics()返回的对象适用于summary()和print()方法。
summary(analytics)返回了精度(precision),召回率(recall)和F-值(F-Score)等指标。这三个指标是文本分类中常用的评价指标。
精度的定义为预测为真实正例的个数除以所有被预测为正例样本的个数。召回率则是预测为真实正例的个数除以所有真实正例样本的个数。F-值则同时考虑了精度和召回率,是两个指标的折衷。
7.整体效果评价(Ensemble agreement)
create_ensembleSummary()函数提供了整体评价功能。它反映了我们所应用的几种分类算法的『同时命中率』。
整体评价函数提供了两个评价指标:Coverage和Recall。
Coverage衡量了达到召回率阈值的文档百分比。
Coverage的定义如下:
其中,k表示满足阈值的算法个数,n代表总的算法个数。
8.交叉验证
为了进一步对比与验证各种算法的精确度,我们可以使用cross_validate()函数进行k-折交叉验证。
SVM<-cross_validate(container,4,"SVM")GLMNET<-cross_validate(container,4,"GLMNET")MAXENT<-cross_validate(container,4,"MAXENT")SLDA<-cross_validate(container,4,"SLDA")BAGGING<-cross_validate(container,4,"BAGGING")BOOSTING<-cross_validate(container,4,"BOOSTING")RF<-cross_validate(container,4,"RF")NNET<-cross_validate(container,4,"NNET")TREE<-cross_validate(container,4,"TREE")
9.导出数据
最后,可以导出结果,对未正确标签的文档做进一步研究处理。比如,看看是哪种情形下,分类算法准确率较低,需要人工干预。
write.csv(analytics@document_summary,"DocumentSummary.csv")
结论
至此,文本分类的『独孤九剑』已然练成!然而,长路漫漫,我们要想提高模型的精度,还需要『勤修内功』,进一步学习模型的细节,加深对模型的理解,从而学会调节各种参数,进行噪音过滤,模型调整等。否则,只怕是『Garbage in, Garbage out』了。数据分析师培训
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20