R文本分类之RTextTools
古有曹植七步成诗,而RTextTools是一款让你可以在十步之内实现九种主流的机器学习分类器模型的文本分类开发包。
它集成了(或者说支持)如下算法相关的包:
支持向量机(Support Vector Machine from e1071)
glmnet(一个非常流行的用于变量选择的R包,俗称kaggle竞赛“三驾马车”之一)
最大熵模型(maximum entropy from maxent)
大规模线性判别(scaled linear discriminant,slda)
装袋算法(bagging from ipred)
提升算法(boosting from caTools)
随机森林(random forest from randomForest)
神经网络(neural networks from nnet)
回归树(regression tree from tree)
RTextTools有着不可不学的三大理由:
首先,RTextTools的设计哲学在于易学与灵活。从而,让没有任何R编程经验的社会科学研究者也能轻松实现高端的机器学习算法;并且,让经验老道的R用户充分发挥R的威力,与其他相关的包结合,如:文本预处理方面的tm包,实现LDA主题模型的topicmodels包等,实现高难度的模型,并且充分提高模型的精度等。
其次,RTextTools提供了从数据载入,数据清洗,到模型评价的所有功能,并且,实现的函数非常简单易记。即所谓的『一条龙服务』。
最后,RTextTools还可以实现结构化数据的分类问题。也就是说,它可以像普通的机器学习包caret那样使用。
下面,让我们一起来见证一下RTextTools是如何在十步之内演绎文本分类这一高端技术活的。
文本分类step-by-step
1.创建矩阵
首先,载入一个自带的测试数据集:data(USCongress)。由于RTextTools集成了tm包的功能,所以tm包在文本预处理方面的功能,如去除空格、移除稀疏词、移除停止词、词干化等功能,都可以轻松实现。
# 创建一个文档-词项矩阵doc_matrix<-create_matrix(USCongress$text,language="english",removeNumbers=TRUE,stemWords=TRUE,removeSparseTerms=.998)
2.创建容器(Container)
创建好文档-词项矩阵以后,下一步要做的就是对矩阵进行训练集/测试集的划分了。RTextTools中的容器(Container)概念,使得人们不必两次读入数据,而将训练集和测试集一并读入,在容器内做区分即可。
既然我们是有监督的分类算法实现,当然不能忘了指定因变量(即类别标签)。在我们的测试数据集中,类别标签为USCongress$major。
注意:类别标签一定要为数值型!
这里,virgin =参数的设置影响到后续模型结果的分析解读。virgin = FALSE意味着告诉R,我们的测试集是有真实的类别标签的。
3.训练模型
数据已经准备妥当,下面就可以进行模型的训练了。前面提到的九个机器学习算法的训练,只需要写成一个向量,作为参数传入train_model()函数即可同时轻松实现各种高大上的分类器模型训练。
我们来看一下train_model()函数的使用方法。
参数的设置也很简单。如果你实在懒得设置,不妨先使用默认的参数试一试。
SVM<-train_model(container,"SVM")GLMNET<-train_model(container,"GLMNET")MAXENT<-train_model(container,"MAXENT")SLDA<-train_model(container,"SLDA")BOOSTING<-train_model(container,"BOOSTING")BAGGING<-train_model(container,"BAGGING")RF<-train_model(container,"RF")#NNET <- train_model(container,"NNET")TREE<-train_model(container,"TREE")
4.使用训练好的模型进行文本分类
train_model()函数会返回一个训练好的模型对象,我们可以把该对象作为参数传给classify_model()函数,进行测试集的分类。
SVM_CLASSIFY<-classify_model(container,SVM)GLMNET_CLASSIFY<-classify_model(container,GLMNET)MAXENT_CLASSIFY<-classify_model(container,MAXENT)SLDA_CLASSIFY<-classify_model(container,SLDA)BOOSTING_CLASSIFY<-classify_model(container,BOOSTING)BAGGING_CLASSIFY<-classify_model(container,BAGGING)RF_CLASSIFY<-classify_model(container,RF)#NNET_CLASSIFY <- classify_model(container, NNET)TREE_CLASSIFY<-classify_model(container,TREE)
5.结果分析
create_analytics()函数提供了对测试集的分类结果的四种解读:从标签出发;从算法对比出发;从角度文档出发;以及整体评价。
analytics<-create_analytics(container,cbind(SVM_CLASSIFY,SLDA_CLASSIFY,BOOSTING_CLASSIFY,BAGGING_CLASSIFY,RF_CLASSIFY,GLMNET_CLASSIFY,TREE_CLASSIFY,MAXENT_CLASSIFY))
6.测试分类器准确率(accuracy)
create_analytics()返回的对象适用于summary()和print()方法。
summary(analytics)返回了精度(precision),召回率(recall)和F-值(F-Score)等指标。这三个指标是文本分类中常用的评价指标。
精度的定义为预测为真实正例的个数除以所有被预测为正例样本的个数。召回率则是预测为真实正例的个数除以所有真实正例样本的个数。F-值则同时考虑了精度和召回率,是两个指标的折衷。
7.整体效果评价(Ensemble agreement)
create_ensembleSummary()函数提供了整体评价功能。它反映了我们所应用的几种分类算法的『同时命中率』。
整体评价函数提供了两个评价指标:Coverage和Recall。
Coverage衡量了达到召回率阈值的文档百分比。
Coverage的定义如下:
其中,k表示满足阈值的算法个数,n代表总的算法个数。
8.交叉验证
为了进一步对比与验证各种算法的精确度,我们可以使用cross_validate()函数进行k-折交叉验证。
SVM<-cross_validate(container,4,"SVM")GLMNET<-cross_validate(container,4,"GLMNET")MAXENT<-cross_validate(container,4,"MAXENT")SLDA<-cross_validate(container,4,"SLDA")BAGGING<-cross_validate(container,4,"BAGGING")BOOSTING<-cross_validate(container,4,"BOOSTING")RF<-cross_validate(container,4,"RF")NNET<-cross_validate(container,4,"NNET")TREE<-cross_validate(container,4,"TREE")
9.导出数据
最后,可以导出结果,对未正确标签的文档做进一步研究处理。比如,看看是哪种情形下,分类算法准确率较低,需要人工干预。
write.csv(analytics@document_summary,"DocumentSummary.csv")
结论
至此,文本分类的『独孤九剑』已然练成!然而,长路漫漫,我们要想提高模型的精度,还需要『勤修内功』,进一步学习模型的细节,加深对模型的理解,从而学会调节各种参数,进行噪音过滤,模型调整等。否则,只怕是『Garbage in, Garbage out』了。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31