R文本分类之RTextTools
古有曹植七步成诗,而RTextTools是一款让你可以在十步之内实现九种主流的机器学习分类器模型的文本分类开发包。
它集成了(或者说支持)如下算法相关的包:
支持向量机(Support Vector Machine from e1071)
glmnet(一个非常流行的用于变量选择的R包,俗称kaggle竞赛“三驾马车”之一)
最大熵模型(maximum entropy from maxent)
大规模线性判别(scaled linear discriminant,slda)
装袋算法(bagging from ipred)
提升算法(boosting from caTools)
随机森林(random forest from randomForest)
神经网络(neural networks from nnet)
回归树(regression tree from tree)
RTextTools有着不可不学的三大理由:
首先,RTextTools的设计哲学在于易学与灵活。从而,让没有任何R编程经验的社会科学研究者也能轻松实现高端的机器学习算法;并且,让经验老道的R用户充分发挥R的威力,与其他相关的包结合,如:文本预处理方面的tm包,实现LDA主题模型的topicmodels包等,实现高难度的模型,并且充分提高模型的精度等。
其次,RTextTools提供了从数据载入,数据清洗,到模型评价的所有功能,并且,实现的函数非常简单易记。即所谓的『一条龙服务』。
最后,RTextTools还可以实现结构化数据的分类问题。也就是说,它可以像普通的机器学习包caret那样使用。
下面,让我们一起来见证一下RTextTools是如何在十步之内演绎文本分类这一高端技术活的。
文本分类step-by-step
1.创建矩阵
首先,载入一个自带的测试数据集:data(USCongress)。由于RTextTools集成了tm包的功能,所以tm包在文本预处理方面的功能,如去除空格、移除稀疏词、移除停止词、词干化等功能,都可以轻松实现。
# 创建一个文档-词项矩阵doc_matrix<-create_matrix(USCongress$text,language="english",removeNumbers=TRUE,stemWords=TRUE,removeSparseTerms=.998)
2.创建容器(Container)
创建好文档-词项矩阵以后,下一步要做的就是对矩阵进行训练集/测试集的划分了。RTextTools中的容器(Container)概念,使得人们不必两次读入数据,而将训练集和测试集一并读入,在容器内做区分即可。
既然我们是有监督的分类算法实现,当然不能忘了指定因变量(即类别标签)。在我们的测试数据集中,类别标签为USCongress$major。
注意:类别标签一定要为数值型!
这里,virgin =参数的设置影响到后续模型结果的分析解读。virgin = FALSE意味着告诉R,我们的测试集是有真实的类别标签的。
3.训练模型
数据已经准备妥当,下面就可以进行模型的训练了。前面提到的九个机器学习算法的训练,只需要写成一个向量,作为参数传入train_model()函数即可同时轻松实现各种高大上的分类器模型训练。
我们来看一下train_model()函数的使用方法。
参数的设置也很简单。如果你实在懒得设置,不妨先使用默认的参数试一试。
SVM<-train_model(container,"SVM")GLMNET<-train_model(container,"GLMNET")MAXENT<-train_model(container,"MAXENT")SLDA<-train_model(container,"SLDA")BOOSTING<-train_model(container,"BOOSTING")BAGGING<-train_model(container,"BAGGING")RF<-train_model(container,"RF")#NNET <- train_model(container,"NNET")TREE<-train_model(container,"TREE")
4.使用训练好的模型进行文本分类
train_model()函数会返回一个训练好的模型对象,我们可以把该对象作为参数传给classify_model()函数,进行测试集的分类。
SVM_CLASSIFY<-classify_model(container,SVM)GLMNET_CLASSIFY<-classify_model(container,GLMNET)MAXENT_CLASSIFY<-classify_model(container,MAXENT)SLDA_CLASSIFY<-classify_model(container,SLDA)BOOSTING_CLASSIFY<-classify_model(container,BOOSTING)BAGGING_CLASSIFY<-classify_model(container,BAGGING)RF_CLASSIFY<-classify_model(container,RF)#NNET_CLASSIFY <- classify_model(container, NNET)TREE_CLASSIFY<-classify_model(container,TREE)
5.结果分析
create_analytics()函数提供了对测试集的分类结果的四种解读:从标签出发;从算法对比出发;从角度文档出发;以及整体评价。
analytics<-create_analytics(container,cbind(SVM_CLASSIFY,SLDA_CLASSIFY,BOOSTING_CLASSIFY,BAGGING_CLASSIFY,RF_CLASSIFY,GLMNET_CLASSIFY,TREE_CLASSIFY,MAXENT_CLASSIFY))
6.测试分类器准确率(accuracy)
create_analytics()返回的对象适用于summary()和print()方法。
summary(analytics)返回了精度(precision),召回率(recall)和F-值(F-Score)等指标。这三个指标是文本分类中常用的评价指标。
精度的定义为预测为真实正例的个数除以所有被预测为正例样本的个数。召回率则是预测为真实正例的个数除以所有真实正例样本的个数。F-值则同时考虑了精度和召回率,是两个指标的折衷。
7.整体效果评价(Ensemble agreement)
create_ensembleSummary()函数提供了整体评价功能。它反映了我们所应用的几种分类算法的『同时命中率』。
整体评价函数提供了两个评价指标:Coverage和Recall。
Coverage衡量了达到召回率阈值的文档百分比。
Coverage的定义如下:
其中,k表示满足阈值的算法个数,n代表总的算法个数。
8.交叉验证
为了进一步对比与验证各种算法的精确度,我们可以使用cross_validate()函数进行k-折交叉验证。
SVM<-cross_validate(container,4,"SVM")GLMNET<-cross_validate(container,4,"GLMNET")MAXENT<-cross_validate(container,4,"MAXENT")SLDA<-cross_validate(container,4,"SLDA")BAGGING<-cross_validate(container,4,"BAGGING")BOOSTING<-cross_validate(container,4,"BOOSTING")RF<-cross_validate(container,4,"RF")NNET<-cross_validate(container,4,"NNET")TREE<-cross_validate(container,4,"TREE")
9.导出数据
最后,可以导出结果,对未正确标签的文档做进一步研究处理。比如,看看是哪种情形下,分类算法准确率较低,需要人工干预。
write.csv(analytics@document_summary,"DocumentSummary.csv")
结论
至此,文本分类的『独孤九剑』已然练成!然而,长路漫漫,我们要想提高模型的精度,还需要『勤修内功』,进一步学习模型的细节,加深对模型的理解,从而学会调节各种参数,进行噪音过滤,模型调整等。否则,只怕是『Garbage in, Garbage out』了。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30