大数据时代的用户行为研究
随着大数据行业的飞速发展,未来5-10年将是大数据产业的黄金增长期。2017年3月21日我国成立了首个聚焦数据流动的国家级实验室——大数据流通与交易国家工程实验室。2017年国内大数据技术和服务市场的复合年增长率预计将达27%,市场规模约320亿美元。设备指纹技术实现了对用户移动设备的精准识别,结合大数据用户研究,使得大数据在精准营销、智能推荐等诸多领域能够完美定位目标用户,实现信息的精准触达。大数据用户研究,不仅仅需要洞察用户特征、用户偏好,还需要评估用户间的关联度,建立用户社交网络。只有对用户全方位的洞察,才能提高定位目标用户的精度,提供大数据应用质量。
研究背景
极光大数据拥有海量的用户行为数据,能够为企业提供全行业诸多领域的综合解决方案。目前基于自有的大数据平台,极光大数据在精准营销、数字化运营、智能推荐等领域取得了丰硕的成果。而极光大数据在这些领域的成就,完全取决于极光高效率的大数据平台、丰富的数据资源、海量跨行业用户标签、以及经验丰富的团队。
目前大数据行业中对于用户的研究大多数集中于用户标签开发阶段。而极光大数据为了提升自己数据产品的质量和实力,在精准营销和智能推荐的实际案例中不仅使用了海量的客户标签,还将基于设备的用户相似性引入模型,以提高目标用户识别精度和广度,实际运用中也取得了非常好的效果。此外设备相似性为两两之间的相似性,对于较大用户体量的极光大数据来说,整个模型处理计算量非常庞大,性能和精度也是我们不断优化的关键点。
极光大数据研究方案
本文重点介绍基于极光海量数据,计算基于用户在移动互联网行为特征的用户行为相似性,以及基于用户线下地理位置轨迹的空间轨迹相似度。
1、 一人多机检测
极光大数据通过自有业务海量调用日志分析,对于用户设备及app建立了多维度的唯一性识别标识,通过设备的多维度识别交叉定位,发掘设备关联关系。
2、 用户行为相似性
极光大数据通过移动设备的用户行为相似性来衡量用户在移动设备上的使用行为相关程度,主要从2个方面来度量:
app安装特征相似度:
基于极光大数据平台的海量数据挖掘,构造用户app安装行为特征矩阵,使用广义Jaccard相关系数,计算用户app安装特征相似度。对于用户app安装特征,不同的app能够反映用户相似度的程度有很大差异,根据app的渗透率加权得到修正后的app安装特征相似度。
WiFi特征关联度:
基于极光大数据平台的海量数据,根据时间、空间、无线WiFi属性等信息进行清洗加工,建立用户WiFi使用特征矩阵;基于用户WiFi特征矩阵,对于不同时段设备间的WiFi特征,采用余弦相似度计算两两用户间的工作日WiFi使用特征关联度和周末WiFi使用特征关联度。
3、空间轨迹相似度
空间轨迹相似度(spatial trajectory similarity)算法的基本思想就是通过降维的手段将多维空间向量分解到同一维度上求解,通过解决平面问题来达到最终解决空间模型的目的。
两个轨迹间的相似度可以定义为:Sim(A,B) = (POIA∩POIB)/ (POIA∪POIB);
向量空间余弦相似度(Cosine Similarity):余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似。
提取一段时间内的用户报点信息,按照时间序列处理,采用STS算法,计算两两设备间的空间轨迹相似度。
实证效果
1、app安装特征相似度:
对于某用户换机前后的两个设备,计算app安装特征相似度,使用app渗透率加权,两个移动设备的app安装特征相似度为:0.913,app安装特征相似性非常高。
两个设备安装app数量为120个以上,app安装重合度为72.8%,同时安装了渗透率低于5%的app应用有22个,渗透率低于1%的app有7个。由此可见,app的安装情况能在一定程度上反应设备之间的相似性。
2、 WiFi使用特征关联度:
基于两个设备的WiFi使用偏好情况,计算WiFi特征关联度,计算得出工作日WiFi使用特征关联度为0.35,周末WiFi使用特征关联度为0;
经过极光大量数据验证,工作日WiFi特征关联度大于0.25,为工作日关系较为密切的用户,比如同事关系;周末WiFi特征关联度大于50%,为周末关系较为密切的用户,比如亲人。
3、空间轨迹相似度
从极光大数据数据库中挑选3个空间轨迹较为相似的设备,其中设备A和设备C为同一用户的两个设备,设备A和设备B的位置轨迹比较相近,以设备A为基准,分别计算设备A和设备B、设备A和设备C的空间轨迹相似度。
上表中都是解析出的各轨迹对应的POI坐标值,按时间维度将三维空间轨迹解析到平面中,分别取各POI点的经度(id,lat)和维度(id,lng)计算轨迹间的余弦相似度。二者的平面轨迹图如下(红线表示设备A,蓝实线表示设备B,虚线表示设备C):
可以计算出COSlat(A,B)= 0.708, COSlng(A,B)= 0.784; COSlat(A,C)= 0.746, COSlng(A,C)= 0.819;
那么可以得到该设备A与设备B的相似度为0.746,与设备C的相似度为0.783。显然设备A和设备C的空间相似度较高。
总结
目前各个行业的大数据的应用越来越频繁,大数据精准营销、大数据运营、智能推荐等应用均取得显著的效果,而这些领域都要求企业对用户要有充分的了解,才能精准的定位目标人群。如何有效高质量的扩充目标群体用户,基于现有用户标签的基础上,用户相似性也是一个非常重要的信息。极光大数据基于设备的用户相似性能够在精准营销、智能推荐中发现很多的关联用户,能够一定程度上扩充关联目标人群,提升企业的营销效率和质量。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16