
R语言之grep函数和正则通配符查
首先,grep函数可以像数据库查询一样对向量中的具有特定条件的元素进行查询!
其次,介绍几种R语言中的正则通配符:
(1)“^”匹配一个字符串的开始,比如sub("^a","",c("abcd","dcba")),表示将开头为a的字符串。如果要将开头的一个字符串替换,简单地写成“^ab”就行。
(2)“$”匹配一个字符串的结尾,比如sub("a$","",c("abcd","dcba"))表示将以a结尾的字符串。
(3)"."表示除了换行符以外的任一字符,比如sub("a.c","",c("abcd","sdacd"))。
(4)“*”表示将其前的字符进行0个或多个的匹配,比如sub("a*b","",c("aabcd","dcaaaba"))。
(5)“?”匹配0或1个正好在它之前的那个字符
(6)“+”匹配1或多个正好在它之前的那个字符。
(7)“.*”可以匹配任意字符,比如sub("a.*e","",c("abcde","edcba"))。
(8)“|”表示逻辑的或,比如sub("ab|ba","",c("abcd","dcba")),可以替换ab或者ba。
(9)“^”还可以表示逻辑的补集,需要写在“[]”中,比如sub("[^ab]","",c("abcd","dcba")),由于sub只替换搜寻到的第一个,因此这个例子中用gsub效果更好。
(10)“[]”还可以用来匹配多个字符,如果不使用任何分隔符号,则搜寻这个集合,比如在sub("[ab]","",c("abcd","dcba"))中,和"a|b"效果一样。
(11)“[-]”的形式可以匹配一个范围,比如sub("[a-c]","",c("abcde","edcba"))匹配从a到c的字符,sub("[1-9]","",c("ab001","001ab"))匹配从1到9的数字。
最后需要提一下的是“贪婪”和“懒惰”的匹配规则。默认情况下是匹配尽可能多的字符,是为贪婪匹配,比如sub("a.*b","",c("aabab","eabbe")),默认匹配最长的a开头b结尾的字串,也就是整个字符串。如果要进行懒惰匹配,也就是匹配最短的字串,只需要在后面加个“?”,比如sub("a.*?b","",c("aabab","eabbe")),就会匹配最开始找到的最短的a开头b结尾的字串。数据分析师培训
最后,举例说明:
例:
> Num <- c(310,456,311,431,421,435,534,312,313,320,321,322,323,314,324,317,3231)
> ipn<-grep("^3",Num,value=T)##开头为3的数字##
> ipn
[1] "310" "311" "312" "313" "320" "321" "322" "323" "314"
[10] "324" "317" "3231"
> ipn<-grep("^31",Num,value=T)##开头为31的数字#
> ipn
[1] "310" "311" "312" "313" "314" "317"
> ipn<-grep("4$",Num,value=T)##以4结尾的的数字#
> ipn
[1] "534" "314" "324"
> ipn<-grep("3.2",Num,value=T)##所有以3开头,以2结尾的数字##
> ipn
[1] "312" "322"
> ipn<-grep("*31",Num,value=T)##所有含‘31’的数字#
> ipn
[1] "310" "311" "431" "312" "313" "314" "317" "3231"
> ipn<-grep("3*1",Num,value=T)##所有开头为3或者末位为1的数字##
> ipn
[1] "310" "311" "431" "421" "312" "313" "321" "314" "317"
[10] "3231"
> ipn<-grep("?31",Num,value=T)##所有含‘31’的数字##
> ipn
[1] "310" "311" "431" "312" "313" "314" "317" "3231"
> ipn<-grep("+31",Num,value=T)##所有含‘31’的数字##
> ipn
[1] "310" "311" "431" "312" "313" "314" "317" "3231"
> ipn<-grep("3.*1",Num,value=T)##所有含‘3'和'1’的数字##
> ipn
[1] "310" "311" "431" "312" "313" "321" "314" "317" "3231"
> ipn<-grep("3|1",Num,value=T)##所有含‘3'或'1’的数字##
> ipn
[1] "310" "311" "431" "421" "435" "534" "312" "313" "320"
[10] "321" "322" "323" "314" "324" "317" "3231"
> ipn<-grep("[1]",Num,value=T)##所有含‘1’的数字##
> ipn
[1] "310" "311" "431" "421" "312" "313" "321" "314" "317"
[10] "3231"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20