SAS信用评分之模型拟合以及验证的大坑
今天的内容是来讲我这段时间被模型拟合和模型验证坑过的那些事。我也是千辛万苦终于是把模型给建出来了。此处应该有掌声。因为模型老是效果不好这件事,我躲在被窝里哭了好几次。好吧,讲正事。
leslie模型拟合
首先,我们来讲下模型拟合的事情,其实模型拟合在我这里就是我到底要选择什么变量进入模型,我到底应该选择多少个变量进入模型。我之前发过一个循环产出变量组合代码,然后算ks值的代码。具体链接在这里:SAS信用评分之逻辑回归的变量选择 现在回头看有点瞎,哈哈哈哈哈。
你可能刚开始200个变量变量输入proc logistic过程,你设置参数 sls=0.05,sle=0.05(SLE:sas中在变量选举进入的参数,SLE(sets criterion for entry into model) 是变量进入模型的标准即统计意义水平值P<0.3,是定逻辑回归中变量纳入的主要条件。SLS:sas中在变量选举进入的参数,SLS(sets criterion for staying in model)是变量在模型中保留的标准即统计意义水平值P<0.3,是定逻辑回归中变量保留的主要条件。逻辑回归变量进入后,因为新的变量进入导致老的变量对整个模型的贡献不足,从中移出的阀值。)0.3是默认条件。那么卡方检验小于0.05的变量都会被筛选出来。
假设你的领导发话了,你最终的模型的变量个数要控制在10-14个,但是这时候可能筛选出来有30几个。那么这30几个你要怎么知道那十几个组合,ks很好,而且达到了要求,之前有人说用主成分分析,主成分分析的理论好像也有这个道理。但是需要注意的是:
小知识
主成分分析:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个综合指标(主成分),用综合指标来解释多变量的方差- 协方差结构,即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的综合指标即为主成分。
但是在我脑子存在的逻辑回归理论是,逻辑回归是一个非线性回归,自然就推翻了主成分分析来降维的方案。具体的为什么不可以用主成分分析,欢迎大神在留言区给出更具体的解释。
我们回到我们那个筛选出来的30几个变量的问题上。其实这个方法是一个关注我公众号的大神告诉我的,谢谢大神。让我来演示一下代码。
Ods Output ParameterEstimates=aa ;
proc logistic data=raw.rong_test12 outest=bb ;
model APPL_STATUS_1(event="1")=
woe_new_industry
woe_new_G_MARITAL_P
woe_new_Q_TLNINE_CNT
woe_new_EDUCATION
woe_new_query_time_n
woe_new_OPERATOR_num_N
woe_new_q_lcc_six
woe_new_a_muser_rate
woe_new_cq_cc_rate
woe_new_o_recently_C
woe_new_q_cc_o
woe_new_q_othree_cnt
woe_new_ACCOUNT_HOUSELOAN
woe_new_c_DELQ_cnt
/selection=score start=14 stop=14 best=10
outROC=ROC_train;
output out=pp
p=pred_status lower=pi_l upper=pi_u ;
run;
其实这个代码中,可能你觉得有疑问就是start=14 stop=14 best=10这三个参数是什么意思。这三个参数的大概的意思就是表达,我要14个变量,然后,你显示前十种最好的组合给我。
小知识
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合;卡方值越小,偏差越小,越趋于符合,若两个值完全相等时,卡方值就为0,表明理论值完全符合。
然后代码跑出来就有“评分卡方”评分的前十个的变量组合,这时候你要是设定best=20,那就是前20。至于这个得分是怎么计算的,我等级还不够,所以我没办法解释。Sorry啦。
那么这10种组合你就可以去挑选,符合业务的啊,或者说ks值比较高的,或者说你做点其他的检验计算,就看你的领导对于模型的评估啦。
以上就是模型拟合的内容,其实还是选择变量的内容啦。
leslie模型检验
验证的内容。其实验证同个数据源的测试数据集的测试这个是比较简单的,毕竟这批数据是跟你的训练数据集一起产生的。有点麻烦是关于跨期数据的验证,这里的跨期的意思,是譬如我取得是2015.8-2016.8的数据,那么我会用2016.9-2016.10的数据作为跨期数据来验证下原模型的效果。
这部分我就没什么代码给你们啦,只是在这里要说一个注意的点,这也是一个关注我的公众号的大神告诉我的。就是在跨期验证的时候,可能效果不是很理想,但是这时候呢,你不要急于泄气。
现在我举一个例子,说下你大概就懂了。
跨期验证某变量的分布:
原模型某变量的分布:
这是一个连续变量在跨期验证以及原模型中分段的分布。那么既然分段的坏账率我们没办法控制,但是需要控制的是,分段的分布我们还是应该调节到和原来模型的分布是差不多,所以在生成跨期数据的时候,需要每个变量都检查跟原来的分布是不是一致,假设对于连续变量分布有5%-10%的偏差就建议调节一下分段范围,让分段接近一下原模型的分布。
假设这个办法都让你的模型效果都达到不到领导要求的话,而且你的变量也是没办法怎么衍生,或者也没有什么其他变量可以拿来用的话。假设在数据量足够的情况下,建议可以分成两部分,譬如分成男女分开建模。这种分开建模的方式也只是建议,还是你要征得领导同意啦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27