使用Python一步一步地来进行数据分析
你已经决定来学习Python,但是你之前没有编程经验。因此,你常常对从哪儿着手而感到困惑,这么多Python的知识需要去学习。以下这些是那些开始使用Python数据分析的初学者的普遍遇到的问题:
需要多久来学习Python?
我需要学习Python到什么程度才能来进行数据分析呢?
学习Python最好的书或者课程有哪些呢?
为了处理数据集,我应该成为一个Python的编程专家吗?
当开始学习一项新技术时,这些都是可以理解的困惑。
不要害怕,我将会告诉你怎样快速上手,而不必成为一个Python编程“忍者”。
不要犯我之前犯过的错
在开始使用Python之前,我对用Python进行数据分析有一个误解:我必须不得不对Python编程特别精通。我那会儿通过完成小的软件项目来学习Python。敲代码是快乐的事儿,但是我的目标不是去成为一个Python开发人员,而是要使用Python数据分析。之后,我意识到,我花了很多时间来学习用Python进行软件开发,而不是数据分析。
在几个小时的深思熟虑之后,我发现,我需要学习5个Python库来有效地解决一系列的数据分析问题。然后,我开始一个接一个的学习这些库。
在我看来,精通用Python开发好的软件才能够高效地进行数据分析,这观点是没有必要的。
忽略给大众的资源
有许多优秀的Python书籍和在线课程,然而我不并不推荐它们中的一些,因为,有些是给大众准备的而不是给那些用来数据分析的人准备的。同样也有许多书是“用Python科学编程”的,但它们是面向各种数学为导向的主题的,而不是成为为了数据分析和统计。不要浪费浪费你的时间去阅读那些为大众准备的Python书籍。
在进一步继续之前,首先设置好你的编程环境,然后学习怎么使用IPython notebook
Numpy
首先,开始学习Numpy吧,因为它是利用Python科学计算的基础包。对Numpy好的掌握将会帮助你有效地使用其他工具例如Pandas。
我已经准备好了IPython笔记,这包含了Numpy的一些基本概念。这个教程包含了Numpy中最频繁使用的操作,例如,N维数组,索引,数组切片,整数索引,数组转换,通用函数,使用数组处理数据,常用的统计方法,等等。
Pandas包含了高级的数据结构和操作工具,它们使得Python数据分析更加快速和容易。
教程包含了series, data frams,从一个axis删除数据,缺失数据处理,等等。
Matplotlib
这是一个分为四部分的Matplolib教程。
1st 部分:
第一部分介绍了Matplotlib基本功能,基本figure类型。
Simple Plotting example
In [113]:
%matplotlib inline
import matplotlib.pyplot as plt #importing matplot lib libraryimport
numpy as np
x = range(100)
#print x, print and check what is xy =[val**2 for val in x]
#print yplt.plot(x,y) #plotting x and y
Out[113]:
[<matplotlib.lines.Line2D at 0x7857bb0>]
fig, axes = plt.subplots(nrows=1, ncols=2)for ax in axes: ax.plot(x, y, 'r') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('title') fig.tight_layout()
fig, ax = plt.subplots()ax.plot(x, x**2, label="y = x**2")ax.plot(x, x**3,
label="y = x**3")ax.legend(loc=2); # upper left cornerax.set_xlabel('x')
ax.set_ylabel('y')ax.set_title('title');
fig, axes = plt.subplots(1, 2, figsize=(10,4))
axes[0].plot(x, x**2, x, np.exp(x))axes[0].set_title("Normal scale")
axes[1].plot(x, x**2, x, np.exp(x))axes[1].set_yscale("log")axes[1].set_title
("Logarithmic scale (y)");
n = np.array([0,1,2,3,4,5])
In [47]:
fig, axes = plt.subplots(1, 4, figsize=(12,3))axes[0].scatter
(xx, xx + 0.25*np.random.randn(len(xx)))axes[0].set_title("scatter")axes[1].step
(n, n**2, lw=2)axes[1].set_title("step")axes[2].bar(n, n**2, align="center",
width=0.5, alpha=0.5)axes[2].set_title("bar")axes[3].fill_between(x, x**2, x**3,
color="green", alpha=0.5);axes[3].set_title("fill_between");
Using Numpy
In [17]:
x = np.linspace(0, 2*np.pi, 100)y =np.sin(x)plt.plot(x,y)
Out[17]:
[<matplotlib.lines.Line2D at 0x579aef0>]
In [24]:
x= np.linspace(-3,2, 200)Y = x ** 2 - 2 * x + 1.plt.plot(x,Y)
Out[24]:
[<matplotlib.lines.Line2D at 0x6ffb310>]
In [32]:
# plotting multiple plotsx =np.linspace(0, 2 * np.pi, 100)y = np.sin(x)z =
np.cos(x)plt.plot(x,y)
plt.plot(x,z)plt.show()# Matplot lib picks different colors for different plot.
In [35]:
cd C:\Users\tk\Desktop\Matplot
C:\Users\tk\Desktop\Matplot
In [39]:
data = np.loadtxt('numpy.txt')plt.plot(data[:,0], data[:,1]) # plotting column
1 vs column 2# The text in the numpy.txt should look like this
# 0 0# 1 1# 2 4# 4 16# 5 25# 6 36
Out[39]:
[<matplotlib.lines.Line2D at 0x740f090>]
In [56]:
data1 = np.loadtxt('scipy.txt') # load the fileprint data1.Tfor val in data1.T:
#loop over each and every value in data1.T plt.plot(data1[:,0], val)
#data1[:,0] is the first row in data1.T # data in scipy.txt looks like this:
# 0 0 6# 1 1 5# 2 4 4
# 4 16 3# 5 25 2# 6 36 1
[[ 0. 1. 2. 4. 5. 6.]
[ 0. 1. 4. 16. 25. 36.]
[ 6. 5. 4. 3. 2. 1.]]
Scatter Plots and Bar Graphs
In [64]:
sct = np.random.rand(20, 2)print sctplt.scatter(sct[:,0], sct[:,1])
# I am plotting a scatter plot.
[[ 0.51454542 0.61859101]
[ 0.45115993 0.69774873]
[ 0.29051205 0.28594808]
[ 0.73240446 0.41905186]
[ 0.23869394 0.5238878 ]
[ 0.38422814 0.31108919]
[ 0.52218967 0.56526379]
[ 0.60760426 0.80247073]
[ 0.37239096 0.51279078]
[ 0.45864677 0.28952167]
[ 0.8325996 0.28479446]
[ 0.14609382 0.8275477 ]
[ 0.86338279 0.87428696]
[ 0.55481585 0.24481165]
[ 0.99553336 0.79511137]
[ 0.55025277 0.67267026]
[ 0.39052024 0.65924857]
[ 0.66868207 0.25186664]
[ 0.64066313 0.74589812]
[ 0.20587731 0.64977807]]
Out[64]:
<matplotlib.collections.PathCollection at 0x78a7110>
In [65]:
ghj =[5, 10 ,15, 20, 25]it =[ 1, 2, 3, 4, 5]plt.bar(ghj, it) # simple bar graph
Out[65]:
<Container object of 5 artists>
In [74]:
ghj =[5, 10 ,15, 20, 25]it =[ 1, 2, 3, 4, 5]plt.bar(ghj, it, width =5)# you can change the thickness of a bar, by default the bar will have a thickness of 0.8 units
Out[74]:
<Container object of 5 artists>
In [75]:
ghj =[5, 10 ,15, 20, 25]it =[ 1, 2, 3, 4, 5]plt.barh(ghj, it) # barh is a horizontal bar graph
Out[75]:
<Container object of 5 artists>
Multiple bar charts
In [95]:
new_list = [[5., 25., 50., 20.], [4., 23., 51., 17.], [6., 22., 52., 19.]]x = np.arange(4)
plt.bar(x + 0.00, new_list[0], color ='b', width =0.25)plt.bar(x + 0.25, new_list[1], color ='r', width =0.25)plt.bar(x + 0.50, new_list[2], color ='g', width =0.25)#plt.show()
In [100]:
#Stacked Bar chartsp = [5., 30., 45., 22.]q = [5., 25., 50., 20.]
x =range(4)plt.bar(x, p, color ='b')plt.bar(x, q, color ='y', bottom =p)
Out[100]:
<Container object of 4 artists>
In [35]:
# plotting more than 2 valuesA = np.array([5., 30., 45., 22.])
B = np.array([5., 25., 50., 20.])C = np.array([1., 2., 1., 1.])
X = np.arange(4)plt.bar(X, A, color = 'b')plt.bar(X, B, color = 'g', bottom = A)plt.bar(X, C, color = 'r', bottom = A + B) # for the third argument, I use A+Bplt.show()
In [94]:
black_money = np.array([5., 30., 45., 22.])
white_money = np.array([5., 25., 50., 20.])z = np.arange(4)plt.barh(z, black_money, color ='g')plt.barh(z, -white_money, color ='r')# - notation is needed for generating, back to back charts
Out[94]:
<Container object of 4 artists>
Other Plots
In [114]:
#Pie chartsy = [5, 25, 45, 65]plt.pie(y)
Out[114]:
([<matplotlib.patches.Wedge at 0x7a19d50>,
<matplotlib.patches.Wedge at 0x7a252b0>,
<matplotlib.patches.Wedge at 0x7a257b0>,
<matplotlib.patches.Wedge at 0x7a25cb0>],
[<matplotlib.text.Text at 0x7a25070>,
<matplotlib.text.Text at 0x7a25550>,
<matplotlib.text.Text at 0x7a25a50>,
<matplotlib.text.Text at 0x7a25f50>])
In [115]:
#Histogramsd = np.random.randn(100)plt.hist(d, bins = 20)
Out[115]:
(array([ 2., 3., 2., 1., 2., 6., 5., 7., 10., 12., 9.,
12., 11., 5., 6., 4., 1., 0., 1., 1.]),
array([-2.9389701 , -2.64475645, -2.35054281, -2.05632916, -1.76211551,
-1.46790186, -1.17368821, -0.87947456, -0.58526092, -0.29104727,
0.00316638, 0.29738003, 0.59159368, 0.88580733, 1.18002097,
1.47423462, 1.76844827, 2.06266192, 2.35687557, 2.65108921,
2.94530286]),
<a list of 20 Patch objects>)
In [116]:
d = np.random.randn(100)plt.boxplot(d)#1) The red bar is the median of the distribution#2) The blue box includes 50 percent of the data from the lower quartile to the upper quartile.
# Thus, the box is centered on the median of the data.
Out[116]:
{'boxes': [<matplotlib.lines.Line2D at 0x7cca090>],
'caps': [<matplotlib.lines.Line2D at 0x7c02d70>,
<matplotlib.lines.Line2D at 0x7cc2c90>],
'fliers': [<matplotlib.lines.Line2D at 0x7cca850>,
<matplotlib.lines.Line2D at 0x7ccae10>],
'medians': [<matplotlib.lines.Line2D at 0x7cca470>],
'whiskers': [<matplotlib.lines.Line2D at 0x7c02730>,
<matplotlib.lines.Line2D at 0x7cc24b0>]}
In [118]:
d = np.random.randn(100, 5) # generating multiple box plotsplt.boxplot(d)
Out[118]:
{'boxes': [<matplotlib.lines.Line2D at 0x7f49d70>,
<matplotlib.lines.Line2D at 0x7ea1c90>,
<matplotlib.lines.Line2D at 0x7eafb90>,
<matplotlib.lines.Line2D at 0x7ebea90>,
<matplotlib.lines.Line2D at 0x7ece990>],
'caps': [<matplotlib.lines.Line2D at 0x7f2b3b0>,
<matplotlib.lines.Line2D at 0x7f49990>,
<matplotlib.lines.Line2D at 0x7ea14d0>,
<matplotlib.lines.Line2D at 0x7ea18b0>,
<matplotlib.lines.Line2D at 0x7eaf3d0>,
<matplotlib.lines.Line2D at 0x7eaf7b0>,
<matplotlib.lines.Line2D at 0x7ebe2d0>,
<matplotlib.lines.Line2D at 0x7ebe6b0>,
<matplotlib.lines.Line2D at 0x7ece1d0>,
<matplotlib.lines.Line2D at 0x7ece5b0>],
'fliers': [<matplotlib.lines.Line2D at 0x7e98550>,
<matplotlib.lines.Line2D at 0x7e98930>,
<matplotlib.lines.Line2D at 0x7ea8470>,
<matplotlib.lines.Line2D at 0x7ea8a10>,
<matplotlib.lines.Line2D at 0x7eb6370>,
<matplotlib.lines.Line2D at 0x7eb6730>,
<matplotlib.lines.Line2D at 0x7ec6270>,
<matplotlib.lines.Line2D at 0x7ec6810>,
<matplotlib.lines.Line2D at 0x8030170>,
<matplotlib.lines.Line2D at 0x8030710>],
'medians': [<matplotlib.lines.Line2D at 0x7e98170>,
<matplotlib.lines.Line2D at 0x7ea8090>,
<matplotlib.lines.Line2D at 0x7eaff70>,
<matplotlib.lines.Line2D at 0x7ebee70>,
<matplotlib.lines.Line2D at 0x7eced70>],
'whiskers': [<matplotlib.lines.Line2D at 0x7f2bb50>,
<matplotlib.lines.Line2D at 0x7f491b0>,
<matplotlib.lines.Line2D at 0x7e98cf0>,
<matplotlib.lines.Line2D at 0x7ea10f0>,
<matplotlib.lines.Line2D at 0x7ea8bf0>,
<matplotlib.lines.Line2D at 0x7ea8fd0>,
<matplotlib.lines.Line2D at 0x7eb6cd0>,
<matplotlib.lines.Line2D at 0x7eb6ed0>,
<matplotlib.lines.Line2D at 0x7ec6bd0>,
<matplotlib.lines.Line2D at 0x7ec6dd0>]}
MatplotLib Part 1
2nd 部分:
包含了怎么调整figure的样式和颜色,例如:makers,line,thicness,line patterns和color map.
%matplotlib inlineimport numpy as npimport matplotlib.pyplot as plt
In [22]:
p =np.random.standard_normal((50,2))p += np.array((-1,1)) # center the distribution at (-1,1)q =np.random.standard_normal((50,2))q += np.array((1,1)) #center the distribution at (-1,1)plt.scatter(p[:,0], p[:,1], color ='.25')plt.scatter(q[:,0], q[:,1], color = '.75')
Out[22]:
<matplotlib.collections.PathCollection at 0x71dab90>
In [34]:
dd =np.random.standard_normal((50,2))plt.scatter(dd[:,0], dd[:,1], color ='1.0', edgecolor ='0.0') # edge color controls the color of the edge
Out[34]:
<matplotlib.collections.PathCollection at 0x7336670>
Custom Color for Bar charts,Pie charts and box plots:
The below bar graph, plots x(1 to 50) (vs) y(50 random integers, within 0-100. But you need different colors for each value. For which we create a list containing four colors(color_set). The list comprehension creates 50 different color values from color_set
In [9]:
vals = np.random.random_integers(99, size =50)color_set = ['.00', '.25', '.50','.75']color_lists = [color_set[(len(color_set)* val) // 100] for val in vals]c = plt.bar(np.arange(50), vals, color = color_lists)
In [8]:
hi =np.random.random_integers(8, size =10)color_set =['.00', '.25', '.50', '.75']plt.pie(hi, colors = color_set)# colors attribute accepts a range of valuesplt.show()#If there are less colors than values, then pyplot.pie() will simply cycle through the color list. In the preceding
#example, we gave a list of four colors to color a pie chart that consisted of eight values. Thus, each color will be used twice
In [27]:
values = np.random.randn(100)w = plt.boxplot(values)for att, lines in w.iteritems(): for l in lines: l.set_color('k')
Color Maps
know more about hsv
In [34]:
# how to color scatter plots#Colormaps are defined in the matplotib.cm module. This module provides
#functions to create and use colormaps. It also provides an exhaustive choice of predefined color maps.import matplotlib.cm as cmN = 256angle = np.linspace(0, 8 * 2 * np.pi, N)radius = np.linspace(.5, 1., N)X = radius * np.cos(angle)Y = radius * np.sin(angle)plt.scatter(X,Y, c=angle, cmap = cm.hsv)
Out[34]:
<matplotlib.collections.PathCollection at 0x714d9f0>
In [44]:
#Color in bar graphsimport matplotlib.cm as cmvals = np.random.random_integers(99, size =50)cmap = cm.ScalarMappable(col.Normalize(0,99), cm.binary)plt.bar(np.arange(len(vals)),vals, color =cmap.to_rgba(vals))
Out[44]:
<Container object of 50 artists>
Line Styles
In [4]:
# I am creating 3 levels of gray plots, with different line shades
def pq(I, mu, sigma): a = 1. / (sigma * np.sqrt(2. * np.pi)) b = -1. / (2. * sigma ** 2) return a * np.exp(b * (I - mu) ** 2)I =np.linspace(-6,6, 1024)plt.plot(I, pq(I, 0., 1.), color = 'k', linestyle ='solid')plt.plot(I, pq(I, 0., .5), color = 'k', linestyle ='dashed')plt.plot(I, pq(I, 0., .25), color = 'k', linestyle ='dashdot')
Out[4]:
[<matplotlib.lines.Line2D at 0x562ffb0>]
In [12]:
N = 15A = np.random.random(N)B= np.random.random(N)X = np.arange(N)plt.bar(X, A, color ='.75')plt.bar(X, A+B , bottom = A, color ='W', linestyle ='dashed') # plot a bar graphplt.show()
In [20]:
def gf(X, mu, sigma): a = 1. / (sigma * np.sqrt(2. * np.pi)) b = -1. / (2. * sigma ** 2) return a * np.exp(b * (X - mu) ** 2)X = np.linspace(-6, 6, 1024)for i in range(64): samples = np.random.standard_normal(50) mu,sigma = np.mean(samples), np.std(samples) plt.plot(X, gf(X, mu, sigma), color = '.75', linewidth = .5)plt.plot(X, gf(X, 0., 1.), color ='.00', linewidth = 3.)
Out[20]:
[<matplotlib.lines.Line2D at 0x59fbab0>]
Fill surfaces with pattern
In [27]:
N = 15A = np.random.random(N)B= np.random.random(N)X = np.arange(N)plt.bar(X, A, color ='w', hatch ='x')plt.bar(X, A+B,bottom =A, color ='r', hatch ='/')# some other hatch attributes are :#/#\#|#-#+#x#o#O#.#*
Out[27]:
<Container object of 15 artists>
Marker styles
In [29]:
cd C:\Users\tk\Desktop\Matplot
C:\Users\tk\Desktop\Matplot
Come back to this section later
In [14]:
X= np.linspace(-6,6,1024)Ya =np.sinc(X)Yb = np.sinc(X) +1plt.plot(X, Ya, marker ='o', color ='.75')plt.plot(X, Yb, marker ='^', color='.00', markevery= 32)# this one marks every 32 nd element
Out[14]:
[<matplotlib.lines.Line2D at 0x7063150>]
In [31]:
# Marker SizeA = np.random.standard_normal((50,2))A += np.array((-1,1))B = np.random.standard_normal((50,2))B += np.array((1, 1))plt.scatter(A[:,0], A[:,1], color ='k', s =25.0)plt.scatter(B[:,0], B[:,1], color ='g', s = 100.0) # size of the marker is specified using 's' attribute
Out[31]:
<matplotlib.collections.PathCollection at 0x7d015f0>
Own Marker Shapes- come back to this later
In [65]:
# more about markersX =np.linspace(-6,6, 1024)Y =np.sinc(X)plt.plot(X,Y, color ='r', marker ='o', markersize =9, markevery = 30, markerfacecolor='w', linewidth = 3.0, markeredgecolor = 'b')
Out[65]:
[<matplotlib.lines.Line2D at 0x84c9750>]
In [20]:
import matplotlib as mplmpl.rc('lines', linewidth =3)mpl.rc('xtick', color ='w') # color of x axis numbersmpl.rc('ytick', color = 'w') # color of y axis numbersmpl.rc('axes', facecolor ='g', edgecolor ='y') # color of axes
mpl.rc('figure', facecolor ='.00',edgecolor ='w') # color of figurempl.rc('axes', color_cycle = ('y','r')) # color of plotsx = np.linspace(0, 7, 1024)plt.plot(x, np.sin(x))plt.plot(x, np.cos(x))
Out[20]:
[<matplotlib.lines.Line2D at 0x7b0fb70>]
MatplotLib Part2
3rd 部分:
图的注释--包含若干图,控制坐标轴范围,长款比和坐标轴。
Annotation
In [1]:
%matplotlib inlineimport numpy as npimport matplotlib.pyplot as plt
In [28]:
X =np.linspace(-6,6, 1024)Y =np.sinc(X)plt.title('A simple marker exercise')# a title notationplt.xlabel('array variables') # adding xlabelplt.ylabel(' random variables') # adding ylabelplt.text(-5, 0.4, 'Matplotlib') # -5 is the x value and 0.4 is y valueplt.plot(X,Y, color ='r', marker ='o', markersize =9, markevery = 30, markerfacecolor='w', linewidth = 3.0, markeredgecolor = 'b')
Out[28]:
[<matplotlib.lines.Line2D at 0x84b6430>]
In [39]:
def pq(I, mu, sigma): a = 1. / (sigma * np.sqrt(2. * np.pi)) b = -1. / (2. * sigma ** 2) return a * np.exp(b * (I - mu) ** 2)I =np.linspace(-6,6, 1024)plt.plot(I, pq(I, 0., 1.), color = 'k', linestyle ='solid')plt.plot(I, pq(I, 0., .5), color = 'k', linestyle ='dashed')plt.plot(I, pq(I, 0., .25), color = 'k', linestyle ='dashdot')# I have created a dictinary of stylesdesign = {'facecolor' : 'y', # color used for the text box'edgecolor' : 'g',
'boxstyle' : 'round'
}plt.text(-4, 1.5, 'Matplot Lib', bbox = design)plt.plot(X, Y, c='k')plt.show()
#This sets the style of the box, which can either be 'round' or 'square'
#'pad': If 'boxstyle' is set to 'square', it defines the amount of padding between the text and the box's sides
Alignment Control
The text is bound by a box. This box is used to relatively align the text to the coordinates passed to pyplot.text(). Using the verticalalignment and horizontalalignment parameters (respective shortcut equivalents are va and ha), we can control how the alignment is done.
The vertical alignment options are as follows:
'center': This is relative to the center of the textbox
'top': This is relative to the upper side of the textbox
'bottom': This is relative to the lower side of the textbox
'baseline': This is relative to the text's baseline
Horizontal alignment options are as follows:
align ='bottom' align ='baseline'
------------------------align = center--------------------------------------
align= 'top
In [41]:
cd C:\Users\tk\Desktop
C:\Users\tk\Desktop
In [44]:
from IPython.display import ImageImage(filename='text alignment.png')#The horizontal alignment options are as follows:#'center': This is relative to the center of the textbox#'left': This is relative to the left side of the textbox#'right': This is relative to the right-hand side of the textbox
Out[44]:
In [76]:
X = np.linspace(-4, 4, 1024)Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)plt.annotate('Big Data',
ha ='center', va ='bottom',xytext =(-1.5, 3.0), xy =(0.75, -2.7),
arrowprops ={'facecolor': 'green', 'shrink':0.05, 'edgecolor': 'black'}) #arrow propertiesplt.plot(X, Y)
Out[76]:
[<matplotlib.lines.Line2D at 0x9d1def0>]
In [74]:
#arrow styles are :from IPython.display import ImageImage(filename='arrows.png')
Out[74]:
Legend properties:
'loc': This is the location of the legend. The default value is 'best', which will place it automatically. Other valid values are
'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', and 'center'.
'shadow': This can be either True or False, and it renders the legend with a shadow effect.
'fancybox': This can be either True or False and renders the legend with a rounded box.
'title': This renders the legend with the title passed as a parameter.
'ncol': This forces the passed value to be the number of columns for the legend
In [101]:
x =np.linspace(0, 6,1024)y1 =np.sin(x)y2 =np.cos(x)plt.xlabel('Sin Wave')plt.ylabel('Cos Wave')plt.plot(x, y1, c='b', lw =3.0, label ='Sin(x)') # labels are specifiedplt.plot(x, y2, c ='r', lw =3.0, ls ='--', label ='Cos(x)')plt.legend(loc ='best', shadow = True, fancybox = False, title ='Waves', ncol =1) # displays the labelsplt.grid(True, lw = 2, ls ='--', c='.75') # adds grid lines to the figureplt.show()
Shapes
In [4]:
#Paths for several kinds of shapes are available in the matplotlib.patches moduleimport matplotlib.patches as patchesdis = patches.Circle((0,0), radius = 1.0, color ='.75' )plt.gca().add_patch(dis) # used to render the image.dis = patches.Rectangle((2.5, -.5), 2.0, 1.0, color ='.75') #patches.rectangle((x & y coordinates), length, breadth)plt.gca().add_patch(dis)dis = patches.Ellipse((0, -2.0), 2.0, 1.0, angle =45, color ='.00')plt.gca().add_patch(dis)dis = patches.FancyBboxPatch((2.5, -2.5), 2.0, 1.0, boxstyle ='roundtooth', color ='g')plt.gca().add_patch(dis)plt.grid(True)plt.axis('scaled') # displays the images within the prescribed axisplt.show()#FancyBox: This is like a rectangle but takes an additional boxstyle parameter
#(either 'larrow', 'rarrow', 'round', 'round4', 'roundtooth', 'sawtooth', or 'square')
In [22]:
import matplotlib.patches as patchestheta = np.linspace(0, 2 * np.pi, 8) # generates an arrayvertical = np.vstack((np.cos(theta), np.sin(theta))).transpose() # vertical stack clubs the two arrays.
#print vertical, print and see how the array looksplt.gca().add_patch(patches.Polygon(vertical, color ='y'))plt.axis('scaled')plt.grid(True)plt.show()#The matplotlib.patches.Polygon()constructor takes a list of coordinates as the inputs, that is, the vertices of the polygon
In [34]:
# a polygon can be imbided into a circletheta = np.linspace(0, 2 * np.pi, 6) # generates an arrayvertical = np.vstack((np.cos(theta), np.sin(theta))).transpose() # vertical stack clubs the two arrays.
#print vertical, print and see how the array looksplt.gca().add_patch(plt.Circle((0,0), radius =1.0, color ='b'))plt.gca().add_patch(plt.Polygon(vertical, fill =None, lw =4.0, ls ='dashed', edgecolor ='w'))plt.axis('scaled')plt.grid(True)plt.show()
Ticks in Matplotlib
In [54]:
#In matplotlib, ticks are small marks on both the axes of a figureimport matplotlib.ticker as tickerX = np.linspace(-12, 12, 1024)Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)pl =plt.axes() #the object that manages the axes of a figurepl.xaxis.set_major_locator(ticker.MultipleLocator(5))pl.xaxis.set_minor_locator(ticker.MultipleLocator(1))plt.plot(X, Y, c = 'y')plt.grid(True, which ='major') # which can take three values: minor, major and bothplt.show()
In [59]:
name_list = ('Omar', 'Serguey', 'Max', 'Zhou', 'Abidin')value_list = np.random.randint(0, 99, size = len(name_list))pos_list = np.arange(len(name_list))ax = plt.axes()ax.xaxis.set_major_locator(ticker.FixedLocator((pos_list)))ax.xaxis.set_major_formatter(ticker.FixedFormatter((name_list)))plt.bar(pos_list, value_list, color = '.75',align = 'center')plt.show()
MatplotLib Part3
4th 部分:
包含了一些复杂图形。
Working with figures
In [4]:
%matplotlib inlineimport numpy as npimport matplotlib.pyplot as plt
In [5]:
T = np.linspace(-np.pi, np.pi, 1024) #fig, (ax0, ax1) = plt.subplots(ncols =2)ax0.plot(np.sin(2 * T), np.cos(0.5 * T), c = 'k')ax1.plot(np.cos(3 * T), np.sin(T), c = 'k')plt.show()
Setting aspect ratio
In [7]:
T = np.linspace(0, 2 * np.pi, 1024)plt.plot(2. * np.cos(T), np.sin(T), c = 'k', lw = 3.)plt.axes().set_aspect('equal') # remove this line of code and see how the figure looksplt.show()
In [12]:
X = np.linspace(-6, 6, 1024)Y1, Y2 = np.sinc(X), np.cos(X)plt.figure(figsize=(10.24, 2.56)) #sets size of the figureplt.plot(X, Y1, c='r', lw = 3.)plt.plot(X, Y2, c='.75', lw = 3.)plt.show()
In [8]:
X = np.linspace(-6, 6, 1024)plt.ylim(-.5, 1.5)plt.plot(X, np.sinc(X), c = 'k')plt.show()
In [16]:
X = np.linspace(-6, 6, 1024)Y = np.sinc(X)X_sub = np.linspace(-3, 3, 1024)#coordinates of subplotY_sub = np.sinc(X_sub) # coordinates of sub plotplt.plot(X, Y, c = 'b')
sub_axes = plt.axes([.6, .6, .25, .25])# coordinates, length and width of the subplot framesub_axes.plot(X_detail, Y_detail, c = 'r')plt.show()
Log Scale
In [20]:
X = np.linspace(1, 10, 1024)plt.yscale('log') # set y scale as log. we would use plot.xscale()plt.plot(X, X, c = 'k', lw = 2., label = r'$f(x)=x$')plt.plot(X, 10 ** X, c = '.75', ls = '--', lw = 2., label = r'$f(x)=e^x$')plt.plot(X, np.log(X), c = '.75', lw = 2., label = r'$f(x)=\log(x)$')plt.legend()plt.show()#The logarithm base is 10 by default, but it can be changed with the optional parameters basex and basey.
Polar Coordinates
In [23]:
T = np.linspace(0 , 2 * np.pi, 1024)plt.axes(polar = True) # show polar coordinatesplt.plot(T, 1. + .25 * np.sin(16 * T), c= 'k')plt.show()
In [25]:
import matplotlib.patches as patches # import patch module from matplotlibax = plt.axes(polar = True)theta = np.linspace(0, 2 * np.pi, 8, endpoint = False)radius = .25 + .75 * np.random.random(size = len(theta))points = np.vstack((theta, radius)).transpose()plt.gca().add_patch(patches.Polygon(points, color = '.75'))plt.show()
In [2]:
x = np.linspace(-6,6,1024)y= np.sin(x)plt.plot(x,y)plt.savefig('bigdata.png', c= 'y', transparent = True) #savefig function writes that data to a file# will create a file named bigdata.png. Its resolution will be 800 x 600 pixels, in 8-bit colors (24-bits per pixel)
In [3]:
theta =np.linspace(0, 2 *np.pi, 8)points =np.vstack((np.cos(theta), np.sin(theta))).Tplt.figure(figsize =(6.0, 6.0))plt.gca().add_patch(plt.Polygon(points, color ='r'))plt.axis('scaled')plt.grid(True)plt.savefig('pl.png', dpi =300) # try 'pl.pdf', pl.svg'#dpi is dots per inch. 300*8 x 6*300 = 2400 x 1800 pixels
MatplotLib Part4
总结
你学习Python时能犯的最简单的错误之一就是同时去尝试学习过多的库。当你努力一下子学会每样东西时,你会花费很多时间来切换这些不同概念之间,变得沮丧,最后转移到其他事情上。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10