使用Python一步一步地来进行数据分析
你已经决定来学习Python,但是你之前没有编程经验。因此,你常常对从哪儿着手而感到困惑,这么多Python的知识需要去学习。以下这些是那些开始使用Python数据分析的初学者的普遍遇到的问题:
需要多久来学习Python?
我需要学习Python到什么程度才能来进行数据分析呢?
学习Python最好的书或者课程有哪些呢?
为了处理数据集,我应该成为一个Python的编程专家吗?
当开始学习一项新技术时,这些都是可以理解的困惑。
不要害怕,我将会告诉你怎样快速上手,而不必成为一个Python编程“忍者”。
不要犯我之前犯过的错
在开始使用Python之前,我对用Python进行数据分析有一个误解:我必须不得不对Python编程特别精通。我那会儿通过完成小的软件项目来学习Python。敲代码是快乐的事儿,但是我的目标不是去成为一个Python开发人员,而是要使用Python数据分析。之后,我意识到,我花了很多时间来学习用Python进行软件开发,而不是数据分析。
在几个小时的深思熟虑之后,我发现,我需要学习5个Python库来有效地解决一系列的数据分析问题。然后,我开始一个接一个的学习这些库。
在我看来,精通用Python开发好的软件才能够高效地进行数据分析,这观点是没有必要的。
忽略给大众的资源
有许多优秀的Python书籍和在线课程,然而我不并不推荐它们中的一些,因为,有些是给大众准备的而不是给那些用来数据分析的人准备的。同样也有许多书是“用Python科学编程”的,但它们是面向各种数学为导向的主题的,而不是成为为了数据分析和统计。不要浪费浪费你的时间去阅读那些为大众准备的Python书籍。
在进一步继续之前,首先设置好你的编程环境,然后学习怎么使用IPython notebook
Numpy
首先,开始学习Numpy吧,因为它是利用Python科学计算的基础包。对Numpy好的掌握将会帮助你有效地使用其他工具例如Pandas。
我已经准备好了IPython笔记,这包含了Numpy的一些基本概念。这个教程包含了Numpy中最频繁使用的操作,例如,N维数组,索引,数组切片,整数索引,数组转换,通用函数,使用数组处理数据,常用的统计方法,等等。
Pandas包含了高级的数据结构和操作工具,它们使得Python数据分析更加快速和容易。
教程包含了series, data frams,从一个axis删除数据,缺失数据处理,等等。
Matplotlib
这是一个分为四部分的Matplolib教程。
1st 部分:
第一部分介绍了Matplotlib基本功能,基本figure类型。
Simple Plotting example
In [113]:
%matplotlib inline
import matplotlib.pyplot as plt #importing matplot lib libraryimport
numpy as np
x = range(100)
#print x, print and check what is xy =[val**2 for val in x]
#print yplt.plot(x,y) #plotting x and y
Out[113]:
[<matplotlib.lines.Line2D at 0x7857bb0>]
fig, axes = plt.subplots(nrows=1, ncols=2)for ax in axes: ax.plot(x, y, 'r') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('title') fig.tight_layout()
fig, ax = plt.subplots()ax.plot(x, x**2, label="y = x**2")ax.plot(x, x**3,
label="y = x**3")ax.legend(loc=2); # upper left cornerax.set_xlabel('x')
ax.set_ylabel('y')ax.set_title('title');
fig, axes = plt.subplots(1, 2, figsize=(10,4))
axes[0].plot(x, x**2, x, np.exp(x))axes[0].set_title("Normal scale")
axes[1].plot(x, x**2, x, np.exp(x))axes[1].set_yscale("log")axes[1].set_title
("Logarithmic scale (y)");
n = np.array([0,1,2,3,4,5])
In [47]:
fig, axes = plt.subplots(1, 4, figsize=(12,3))axes[0].scatter
(xx, xx + 0.25*np.random.randn(len(xx)))axes[0].set_title("scatter")axes[1].step
(n, n**2, lw=2)axes[1].set_title("step")axes[2].bar(n, n**2, align="center",
width=0.5, alpha=0.5)axes[2].set_title("bar")axes[3].fill_between(x, x**2, x**3,
color="green", alpha=0.5);axes[3].set_title("fill_between");
Using Numpy
In [17]:
x = np.linspace(0, 2*np.pi, 100)y =np.sin(x)plt.plot(x,y)
Out[17]:
[<matplotlib.lines.Line2D at 0x579aef0>]
In [24]:
x= np.linspace(-3,2, 200)Y = x ** 2 - 2 * x + 1.plt.plot(x,Y)
Out[24]:
[<matplotlib.lines.Line2D at 0x6ffb310>]
In [32]:
# plotting multiple plotsx =np.linspace(0, 2 * np.pi, 100)y = np.sin(x)z =
np.cos(x)plt.plot(x,y)
plt.plot(x,z)plt.show()# Matplot lib picks different colors for different plot.
In [35]:
cd C:\Users\tk\Desktop\Matplot
C:\Users\tk\Desktop\Matplot
In [39]:
data = np.loadtxt('numpy.txt')plt.plot(data[:,0], data[:,1]) # plotting column
1 vs column 2# The text in the numpy.txt should look like this
# 0 0# 1 1# 2 4# 4 16# 5 25# 6 36
Out[39]:
[<matplotlib.lines.Line2D at 0x740f090>]
In [56]:
data1 = np.loadtxt('scipy.txt') # load the fileprint data1.Tfor val in data1.T:
#loop over each and every value in data1.T plt.plot(data1[:,0], val)
#data1[:,0] is the first row in data1.T # data in scipy.txt looks like this:
# 0 0 6# 1 1 5# 2 4 4
# 4 16 3# 5 25 2# 6 36 1
[[ 0. 1. 2. 4. 5. 6.]
[ 0. 1. 4. 16. 25. 36.]
[ 6. 5. 4. 3. 2. 1.]]
Scatter Plots and Bar Graphs
In [64]:
sct = np.random.rand(20, 2)print sctplt.scatter(sct[:,0], sct[:,1])
# I am plotting a scatter plot.
[[ 0.51454542 0.61859101]
[ 0.45115993 0.69774873]
[ 0.29051205 0.28594808]
[ 0.73240446 0.41905186]
[ 0.23869394 0.5238878 ]
[ 0.38422814 0.31108919]
[ 0.52218967 0.56526379]
[ 0.60760426 0.80247073]
[ 0.37239096 0.51279078]
[ 0.45864677 0.28952167]
[ 0.8325996 0.28479446]
[ 0.14609382 0.8275477 ]
[ 0.86338279 0.87428696]
[ 0.55481585 0.24481165]
[ 0.99553336 0.79511137]
[ 0.55025277 0.67267026]
[ 0.39052024 0.65924857]
[ 0.66868207 0.25186664]
[ 0.64066313 0.74589812]
[ 0.20587731 0.64977807]]
Out[64]:
<matplotlib.collections.PathCollection at 0x78a7110>
In [65]:
ghj =[5, 10 ,15, 20, 25]it =[ 1, 2, 3, 4, 5]plt.bar(ghj, it) # simple bar graph
Out[65]:
<Container object of 5 artists>
In [74]:
ghj =[5, 10 ,15, 20, 25]it =[ 1, 2, 3, 4, 5]plt.bar(ghj, it, width =5)# you can change the thickness of a bar, by default the bar will have a thickness of 0.8 units
Out[74]:
<Container object of 5 artists>
In [75]:
ghj =[5, 10 ,15, 20, 25]it =[ 1, 2, 3, 4, 5]plt.barh(ghj, it) # barh is a horizontal bar graph
Out[75]:
<Container object of 5 artists>
Multiple bar charts
In [95]:
new_list = [[5., 25., 50., 20.], [4., 23., 51., 17.], [6., 22., 52., 19.]]x = np.arange(4)
plt.bar(x + 0.00, new_list[0], color ='b', width =0.25)plt.bar(x + 0.25, new_list[1], color ='r', width =0.25)plt.bar(x + 0.50, new_list[2], color ='g', width =0.25)#plt.show()
In [100]:
#Stacked Bar chartsp = [5., 30., 45., 22.]q = [5., 25., 50., 20.]
x =range(4)plt.bar(x, p, color ='b')plt.bar(x, q, color ='y', bottom =p)
Out[100]:
<Container object of 4 artists>
In [35]:
# plotting more than 2 valuesA = np.array([5., 30., 45., 22.])
B = np.array([5., 25., 50., 20.])C = np.array([1., 2., 1., 1.])
X = np.arange(4)plt.bar(X, A, color = 'b')plt.bar(X, B, color = 'g', bottom = A)plt.bar(X, C, color = 'r', bottom = A + B) # for the third argument, I use A+Bplt.show()
In [94]:
black_money = np.array([5., 30., 45., 22.])
white_money = np.array([5., 25., 50., 20.])z = np.arange(4)plt.barh(z, black_money, color ='g')plt.barh(z, -white_money, color ='r')# - notation is needed for generating, back to back charts
Out[94]:
<Container object of 4 artists>
Other Plots
In [114]:
#Pie chartsy = [5, 25, 45, 65]plt.pie(y)
Out[114]:
([<matplotlib.patches.Wedge at 0x7a19d50>,
<matplotlib.patches.Wedge at 0x7a252b0>,
<matplotlib.patches.Wedge at 0x7a257b0>,
<matplotlib.patches.Wedge at 0x7a25cb0>],
[<matplotlib.text.Text at 0x7a25070>,
<matplotlib.text.Text at 0x7a25550>,
<matplotlib.text.Text at 0x7a25a50>,
<matplotlib.text.Text at 0x7a25f50>])
In [115]:
#Histogramsd = np.random.randn(100)plt.hist(d, bins = 20)
Out[115]:
(array([ 2., 3., 2., 1., 2., 6., 5., 7., 10., 12., 9.,
12., 11., 5., 6., 4., 1., 0., 1., 1.]),
array([-2.9389701 , -2.64475645, -2.35054281, -2.05632916, -1.76211551,
-1.46790186, -1.17368821, -0.87947456, -0.58526092, -0.29104727,
0.00316638, 0.29738003, 0.59159368, 0.88580733, 1.18002097,
1.47423462, 1.76844827, 2.06266192, 2.35687557, 2.65108921,
2.94530286]),
<a list of 20 Patch objects>)
In [116]:
d = np.random.randn(100)plt.boxplot(d)#1) The red bar is the median of the distribution#2) The blue box includes 50 percent of the data from the lower quartile to the upper quartile.
# Thus, the box is centered on the median of the data.
Out[116]:
{'boxes': [<matplotlib.lines.Line2D at 0x7cca090>],
'caps': [<matplotlib.lines.Line2D at 0x7c02d70>,
<matplotlib.lines.Line2D at 0x7cc2c90>],
'fliers': [<matplotlib.lines.Line2D at 0x7cca850>,
<matplotlib.lines.Line2D at 0x7ccae10>],
'medians': [<matplotlib.lines.Line2D at 0x7cca470>],
'whiskers': [<matplotlib.lines.Line2D at 0x7c02730>,
<matplotlib.lines.Line2D at 0x7cc24b0>]}
In [118]:
d = np.random.randn(100, 5) # generating multiple box plotsplt.boxplot(d)
Out[118]:
{'boxes': [<matplotlib.lines.Line2D at 0x7f49d70>,
<matplotlib.lines.Line2D at 0x7ea1c90>,
<matplotlib.lines.Line2D at 0x7eafb90>,
<matplotlib.lines.Line2D at 0x7ebea90>,
<matplotlib.lines.Line2D at 0x7ece990>],
'caps': [<matplotlib.lines.Line2D at 0x7f2b3b0>,
<matplotlib.lines.Line2D at 0x7f49990>,
<matplotlib.lines.Line2D at 0x7ea14d0>,
<matplotlib.lines.Line2D at 0x7ea18b0>,
<matplotlib.lines.Line2D at 0x7eaf3d0>,
<matplotlib.lines.Line2D at 0x7eaf7b0>,
<matplotlib.lines.Line2D at 0x7ebe2d0>,
<matplotlib.lines.Line2D at 0x7ebe6b0>,
<matplotlib.lines.Line2D at 0x7ece1d0>,
<matplotlib.lines.Line2D at 0x7ece5b0>],
'fliers': [<matplotlib.lines.Line2D at 0x7e98550>,
<matplotlib.lines.Line2D at 0x7e98930>,
<matplotlib.lines.Line2D at 0x7ea8470>,
<matplotlib.lines.Line2D at 0x7ea8a10>,
<matplotlib.lines.Line2D at 0x7eb6370>,
<matplotlib.lines.Line2D at 0x7eb6730>,
<matplotlib.lines.Line2D at 0x7ec6270>,
<matplotlib.lines.Line2D at 0x7ec6810>,
<matplotlib.lines.Line2D at 0x8030170>,
<matplotlib.lines.Line2D at 0x8030710>],
'medians': [<matplotlib.lines.Line2D at 0x7e98170>,
<matplotlib.lines.Line2D at 0x7ea8090>,
<matplotlib.lines.Line2D at 0x7eaff70>,
<matplotlib.lines.Line2D at 0x7ebee70>,
<matplotlib.lines.Line2D at 0x7eced70>],
'whiskers': [<matplotlib.lines.Line2D at 0x7f2bb50>,
<matplotlib.lines.Line2D at 0x7f491b0>,
<matplotlib.lines.Line2D at 0x7e98cf0>,
<matplotlib.lines.Line2D at 0x7ea10f0>,
<matplotlib.lines.Line2D at 0x7ea8bf0>,
<matplotlib.lines.Line2D at 0x7ea8fd0>,
<matplotlib.lines.Line2D at 0x7eb6cd0>,
<matplotlib.lines.Line2D at 0x7eb6ed0>,
<matplotlib.lines.Line2D at 0x7ec6bd0>,
<matplotlib.lines.Line2D at 0x7ec6dd0>]}
MatplotLib Part 1
2nd 部分:
包含了怎么调整figure的样式和颜色,例如:makers,line,thicness,line patterns和color map.
%matplotlib inlineimport numpy as npimport matplotlib.pyplot as plt
In [22]:
p =np.random.standard_normal((50,2))p += np.array((-1,1)) # center the distribution at (-1,1)q =np.random.standard_normal((50,2))q += np.array((1,1)) #center the distribution at (-1,1)plt.scatter(p[:,0], p[:,1], color ='.25')plt.scatter(q[:,0], q[:,1], color = '.75')
Out[22]:
<matplotlib.collections.PathCollection at 0x71dab90>
In [34]:
dd =np.random.standard_normal((50,2))plt.scatter(dd[:,0], dd[:,1], color ='1.0', edgecolor ='0.0') # edge color controls the color of the edge
Out[34]:
<matplotlib.collections.PathCollection at 0x7336670>
Custom Color for Bar charts,Pie charts and box plots:
The below bar graph, plots x(1 to 50) (vs) y(50 random integers, within 0-100. But you need different colors for each value. For which we create a list containing four colors(color_set). The list comprehension creates 50 different color values from color_set
In [9]:
vals = np.random.random_integers(99, size =50)color_set = ['.00', '.25', '.50','.75']color_lists = [color_set[(len(color_set)* val) // 100] for val in vals]c = plt.bar(np.arange(50), vals, color = color_lists)
In [8]:
hi =np.random.random_integers(8, size =10)color_set =['.00', '.25', '.50', '.75']plt.pie(hi, colors = color_set)# colors attribute accepts a range of valuesplt.show()#If there are less colors than values, then pyplot.pie() will simply cycle through the color list. In the preceding
#example, we gave a list of four colors to color a pie chart that consisted of eight values. Thus, each color will be used twice
In [27]:
values = np.random.randn(100)w = plt.boxplot(values)for att, lines in w.iteritems(): for l in lines: l.set_color('k')
Color Maps
know more about hsv
In [34]:
# how to color scatter plots#Colormaps are defined in the matplotib.cm module. This module provides
#functions to create and use colormaps. It also provides an exhaustive choice of predefined color maps.import matplotlib.cm as cmN = 256angle = np.linspace(0, 8 * 2 * np.pi, N)radius = np.linspace(.5, 1., N)X = radius * np.cos(angle)Y = radius * np.sin(angle)plt.scatter(X,Y, c=angle, cmap = cm.hsv)
Out[34]:
<matplotlib.collections.PathCollection at 0x714d9f0>
In [44]:
#Color in bar graphsimport matplotlib.cm as cmvals = np.random.random_integers(99, size =50)cmap = cm.ScalarMappable(col.Normalize(0,99), cm.binary)plt.bar(np.arange(len(vals)),vals, color =cmap.to_rgba(vals))
Out[44]:
<Container object of 50 artists>
Line Styles
In [4]:
# I am creating 3 levels of gray plots, with different line shades
def pq(I, mu, sigma): a = 1. / (sigma * np.sqrt(2. * np.pi)) b = -1. / (2. * sigma ** 2) return a * np.exp(b * (I - mu) ** 2)I =np.linspace(-6,6, 1024)plt.plot(I, pq(I, 0., 1.), color = 'k', linestyle ='solid')plt.plot(I, pq(I, 0., .5), color = 'k', linestyle ='dashed')plt.plot(I, pq(I, 0., .25), color = 'k', linestyle ='dashdot')
Out[4]:
[<matplotlib.lines.Line2D at 0x562ffb0>]
In [12]:
N = 15A = np.random.random(N)B= np.random.random(N)X = np.arange(N)plt.bar(X, A, color ='.75')plt.bar(X, A+B , bottom = A, color ='W', linestyle ='dashed') # plot a bar graphplt.show()
In [20]:
def gf(X, mu, sigma): a = 1. / (sigma * np.sqrt(2. * np.pi)) b = -1. / (2. * sigma ** 2) return a * np.exp(b * (X - mu) ** 2)X = np.linspace(-6, 6, 1024)for i in range(64): samples = np.random.standard_normal(50) mu,sigma = np.mean(samples), np.std(samples) plt.plot(X, gf(X, mu, sigma), color = '.75', linewidth = .5)plt.plot(X, gf(X, 0., 1.), color ='.00', linewidth = 3.)
Out[20]:
[<matplotlib.lines.Line2D at 0x59fbab0>]
Fill surfaces with pattern
In [27]:
N = 15A = np.random.random(N)B= np.random.random(N)X = np.arange(N)plt.bar(X, A, color ='w', hatch ='x')plt.bar(X, A+B,bottom =A, color ='r', hatch ='/')# some other hatch attributes are :#/#\#|#-#+#x#o#O#.#*
Out[27]:
<Container object of 15 artists>
Marker styles
In [29]:
cd C:\Users\tk\Desktop\Matplot
C:\Users\tk\Desktop\Matplot
Come back to this section later
In [14]:
X= np.linspace(-6,6,1024)Ya =np.sinc(X)Yb = np.sinc(X) +1plt.plot(X, Ya, marker ='o', color ='.75')plt.plot(X, Yb, marker ='^', color='.00', markevery= 32)# this one marks every 32 nd element
Out[14]:
[<matplotlib.lines.Line2D at 0x7063150>]
In [31]:
# Marker SizeA = np.random.standard_normal((50,2))A += np.array((-1,1))B = np.random.standard_normal((50,2))B += np.array((1, 1))plt.scatter(A[:,0], A[:,1], color ='k', s =25.0)plt.scatter(B[:,0], B[:,1], color ='g', s = 100.0) # size of the marker is specified using 's' attribute
Out[31]:
<matplotlib.collections.PathCollection at 0x7d015f0>
Own Marker Shapes- come back to this later
In [65]:
# more about markersX =np.linspace(-6,6, 1024)Y =np.sinc(X)plt.plot(X,Y, color ='r', marker ='o', markersize =9, markevery = 30, markerfacecolor='w', linewidth = 3.0, markeredgecolor = 'b')
Out[65]:
[<matplotlib.lines.Line2D at 0x84c9750>]
In [20]:
import matplotlib as mplmpl.rc('lines', linewidth =3)mpl.rc('xtick', color ='w') # color of x axis numbersmpl.rc('ytick', color = 'w') # color of y axis numbersmpl.rc('axes', facecolor ='g', edgecolor ='y') # color of axes
mpl.rc('figure', facecolor ='.00',edgecolor ='w') # color of figurempl.rc('axes', color_cycle = ('y','r')) # color of plotsx = np.linspace(0, 7, 1024)plt.plot(x, np.sin(x))plt.plot(x, np.cos(x))
Out[20]:
[<matplotlib.lines.Line2D at 0x7b0fb70>]
MatplotLib Part2
3rd 部分:
图的注释--包含若干图,控制坐标轴范围,长款比和坐标轴。
Annotation
In [1]:
%matplotlib inlineimport numpy as npimport matplotlib.pyplot as plt
In [28]:
X =np.linspace(-6,6, 1024)Y =np.sinc(X)plt.title('A simple marker exercise')# a title notationplt.xlabel('array variables') # adding xlabelplt.ylabel(' random variables') # adding ylabelplt.text(-5, 0.4, 'Matplotlib') # -5 is the x value and 0.4 is y valueplt.plot(X,Y, color ='r', marker ='o', markersize =9, markevery = 30, markerfacecolor='w', linewidth = 3.0, markeredgecolor = 'b')
Out[28]:
[<matplotlib.lines.Line2D at 0x84b6430>]
In [39]:
def pq(I, mu, sigma): a = 1. / (sigma * np.sqrt(2. * np.pi)) b = -1. / (2. * sigma ** 2) return a * np.exp(b * (I - mu) ** 2)I =np.linspace(-6,6, 1024)plt.plot(I, pq(I, 0., 1.), color = 'k', linestyle ='solid')plt.plot(I, pq(I, 0., .5), color = 'k', linestyle ='dashed')plt.plot(I, pq(I, 0., .25), color = 'k', linestyle ='dashdot')# I have created a dictinary of stylesdesign = {'facecolor' : 'y', # color used for the text box'edgecolor' : 'g',
'boxstyle' : 'round'
}plt.text(-4, 1.5, 'Matplot Lib', bbox = design)plt.plot(X, Y, c='k')plt.show()
#This sets the style of the box, which can either be 'round' or 'square'
#'pad': If 'boxstyle' is set to 'square', it defines the amount of padding between the text and the box's sides
Alignment Control
The text is bound by a box. This box is used to relatively align the text to the coordinates passed to pyplot.text(). Using the verticalalignment and horizontalalignment parameters (respective shortcut equivalents are va and ha), we can control how the alignment is done.
The vertical alignment options are as follows:
'center': This is relative to the center of the textbox
'top': This is relative to the upper side of the textbox
'bottom': This is relative to the lower side of the textbox
'baseline': This is relative to the text's baseline
Horizontal alignment options are as follows:
align ='bottom' align ='baseline'
------------------------align = center--------------------------------------
align= 'top
In [41]:
cd C:\Users\tk\Desktop
C:\Users\tk\Desktop
In [44]:
from IPython.display import ImageImage(filename='text alignment.png')#The horizontal alignment options are as follows:#'center': This is relative to the center of the textbox#'left': This is relative to the left side of the textbox#'right': This is relative to the right-hand side of the textbox
Out[44]:
In [76]:
X = np.linspace(-4, 4, 1024)Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)plt.annotate('Big Data',
ha ='center', va ='bottom',xytext =(-1.5, 3.0), xy =(0.75, -2.7),
arrowprops ={'facecolor': 'green', 'shrink':0.05, 'edgecolor': 'black'}) #arrow propertiesplt.plot(X, Y)
Out[76]:
[<matplotlib.lines.Line2D at 0x9d1def0>]
In [74]:
#arrow styles are :from IPython.display import ImageImage(filename='arrows.png')
Out[74]:
Legend properties:
'loc': This is the location of the legend. The default value is 'best', which will place it automatically. Other valid values are
'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', and 'center'.
'shadow': This can be either True or False, and it renders the legend with a shadow effect.
'fancybox': This can be either True or False and renders the legend with a rounded box.
'title': This renders the legend with the title passed as a parameter.
'ncol': This forces the passed value to be the number of columns for the legend
In [101]:
x =np.linspace(0, 6,1024)y1 =np.sin(x)y2 =np.cos(x)plt.xlabel('Sin Wave')plt.ylabel('Cos Wave')plt.plot(x, y1, c='b', lw =3.0, label ='Sin(x)') # labels are specifiedplt.plot(x, y2, c ='r', lw =3.0, ls ='--', label ='Cos(x)')plt.legend(loc ='best', shadow = True, fancybox = False, title ='Waves', ncol =1) # displays the labelsplt.grid(True, lw = 2, ls ='--', c='.75') # adds grid lines to the figureplt.show()
Shapes
In [4]:
#Paths for several kinds of shapes are available in the matplotlib.patches moduleimport matplotlib.patches as patchesdis = patches.Circle((0,0), radius = 1.0, color ='.75' )plt.gca().add_patch(dis) # used to render the image.dis = patches.Rectangle((2.5, -.5), 2.0, 1.0, color ='.75') #patches.rectangle((x & y coordinates), length, breadth)plt.gca().add_patch(dis)dis = patches.Ellipse((0, -2.0), 2.0, 1.0, angle =45, color ='.00')plt.gca().add_patch(dis)dis = patches.FancyBboxPatch((2.5, -2.5), 2.0, 1.0, boxstyle ='roundtooth', color ='g')plt.gca().add_patch(dis)plt.grid(True)plt.axis('scaled') # displays the images within the prescribed axisplt.show()#FancyBox: This is like a rectangle but takes an additional boxstyle parameter
#(either 'larrow', 'rarrow', 'round', 'round4', 'roundtooth', 'sawtooth', or 'square')
In [22]:
import matplotlib.patches as patchestheta = np.linspace(0, 2 * np.pi, 8) # generates an arrayvertical = np.vstack((np.cos(theta), np.sin(theta))).transpose() # vertical stack clubs the two arrays.
#print vertical, print and see how the array looksplt.gca().add_patch(patches.Polygon(vertical, color ='y'))plt.axis('scaled')plt.grid(True)plt.show()#The matplotlib.patches.Polygon()constructor takes a list of coordinates as the inputs, that is, the vertices of the polygon
In [34]:
# a polygon can be imbided into a circletheta = np.linspace(0, 2 * np.pi, 6) # generates an arrayvertical = np.vstack((np.cos(theta), np.sin(theta))).transpose() # vertical stack clubs the two arrays.
#print vertical, print and see how the array looksplt.gca().add_patch(plt.Circle((0,0), radius =1.0, color ='b'))plt.gca().add_patch(plt.Polygon(vertical, fill =None, lw =4.0, ls ='dashed', edgecolor ='w'))plt.axis('scaled')plt.grid(True)plt.show()
Ticks in Matplotlib
In [54]:
#In matplotlib, ticks are small marks on both the axes of a figureimport matplotlib.ticker as tickerX = np.linspace(-12, 12, 1024)Y = .25 * (X + 4.) * (X + 1.) * (X - 2.)pl =plt.axes() #the object that manages the axes of a figurepl.xaxis.set_major_locator(ticker.MultipleLocator(5))pl.xaxis.set_minor_locator(ticker.MultipleLocator(1))plt.plot(X, Y, c = 'y')plt.grid(True, which ='major') # which can take three values: minor, major and bothplt.show()
In [59]:
name_list = ('Omar', 'Serguey', 'Max', 'Zhou', 'Abidin')value_list = np.random.randint(0, 99, size = len(name_list))pos_list = np.arange(len(name_list))ax = plt.axes()ax.xaxis.set_major_locator(ticker.FixedLocator((pos_list)))ax.xaxis.set_major_formatter(ticker.FixedFormatter((name_list)))plt.bar(pos_list, value_list, color = '.75',align = 'center')plt.show()
MatplotLib Part3
4th 部分:
包含了一些复杂图形。
Working with figures
In [4]:
%matplotlib inlineimport numpy as npimport matplotlib.pyplot as plt
In [5]:
T = np.linspace(-np.pi, np.pi, 1024) #fig, (ax0, ax1) = plt.subplots(ncols =2)ax0.plot(np.sin(2 * T), np.cos(0.5 * T), c = 'k')ax1.plot(np.cos(3 * T), np.sin(T), c = 'k')plt.show()
Setting aspect ratio
In [7]:
T = np.linspace(0, 2 * np.pi, 1024)plt.plot(2. * np.cos(T), np.sin(T), c = 'k', lw = 3.)plt.axes().set_aspect('equal') # remove this line of code and see how the figure looksplt.show()
In [12]:
X = np.linspace(-6, 6, 1024)Y1, Y2 = np.sinc(X), np.cos(X)plt.figure(figsize=(10.24, 2.56)) #sets size of the figureplt.plot(X, Y1, c='r', lw = 3.)plt.plot(X, Y2, c='.75', lw = 3.)plt.show()
In [8]:
X = np.linspace(-6, 6, 1024)plt.ylim(-.5, 1.5)plt.plot(X, np.sinc(X), c = 'k')plt.show()
In [16]:
X = np.linspace(-6, 6, 1024)Y = np.sinc(X)X_sub = np.linspace(-3, 3, 1024)#coordinates of subplotY_sub = np.sinc(X_sub) # coordinates of sub plotplt.plot(X, Y, c = 'b')
sub_axes = plt.axes([.6, .6, .25, .25])# coordinates, length and width of the subplot framesub_axes.plot(X_detail, Y_detail, c = 'r')plt.show()
Log Scale
In [20]:
X = np.linspace(1, 10, 1024)plt.yscale('log') # set y scale as log. we would use plot.xscale()plt.plot(X, X, c = 'k', lw = 2., label = r'$f(x)=x$')plt.plot(X, 10 ** X, c = '.75', ls = '--', lw = 2., label = r'$f(x)=e^x$')plt.plot(X, np.log(X), c = '.75', lw = 2., label = r'$f(x)=\log(x)$')plt.legend()plt.show()#The logarithm base is 10 by default, but it can be changed with the optional parameters basex and basey.
Polar Coordinates
In [23]:
T = np.linspace(0 , 2 * np.pi, 1024)plt.axes(polar = True) # show polar coordinatesplt.plot(T, 1. + .25 * np.sin(16 * T), c= 'k')plt.show()
In [25]:
import matplotlib.patches as patches # import patch module from matplotlibax = plt.axes(polar = True)theta = np.linspace(0, 2 * np.pi, 8, endpoint = False)radius = .25 + .75 * np.random.random(size = len(theta))points = np.vstack((theta, radius)).transpose()plt.gca().add_patch(patches.Polygon(points, color = '.75'))plt.show()
In [2]:
x = np.linspace(-6,6,1024)y= np.sin(x)plt.plot(x,y)plt.savefig('bigdata.png', c= 'y', transparent = True) #savefig function writes that data to a file# will create a file named bigdata.png. Its resolution will be 800 x 600 pixels, in 8-bit colors (24-bits per pixel)
In [3]:
theta =np.linspace(0, 2 *np.pi, 8)points =np.vstack((np.cos(theta), np.sin(theta))).Tplt.figure(figsize =(6.0, 6.0))plt.gca().add_patch(plt.Polygon(points, color ='r'))plt.axis('scaled')plt.grid(True)plt.savefig('pl.png', dpi =300) # try 'pl.pdf', pl.svg'#dpi is dots per inch. 300*8 x 6*300 = 2400 x 1800 pixels
MatplotLib Part4
总结
你学习Python时能犯的最简单的错误之一就是同时去尝试学习过多的库。当你努力一下子学会每样东西时,你会花费很多时间来切换这些不同概念之间,变得沮丧,最后转移到其他事情上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29