
“小数据”的统计学
一、小数据来自哪里?
科技公司的数据科学、关联性分析以及机器学习等方面的活动大多围绕着”大数据”,这些大型数据集包含文档、 用户、 文件、 查询、 歌曲、 图片等信息,规模数以千计,数十万、 数百万、 甚至数十亿。过去十年里,处理这类型数据集的基础设施、 工具和算法发展得非常迅速,并且得到了不断改善。大多数数据科学家和机器学习从业人员就是在这样的情况下积累了经验,逐渐习惯于那些用着顺手的算法,而且在那些常见的需要权衡的问题上面拥有良好的直觉(经常需要权衡的问题包括:偏差和方差,灵活性和稳定性,手工特性提取和特征学习等等)。但小的数据集仍然时不时的出现,而且伴随的问题往往难以处理,需要一组不同的算法和不同的技能。小数据集出现在以下几种情况:
企业解决方案: 当您尝试为一个人员数量相对有限的企业提供解决方案,而不是为成千上万的用户提供单一的解决方案。
时间序列: 时间供不应求!尤其是和用户、查询指令、会话、文件等相比较。这显然取决于时间单位或采样率,但是想每次都能有效地增加采样率没那么容易,比如你得到的标定数据是日期的话,那么你每天只有一个数据点。
关于以下样本的聚类模型:州市、国家、运动队或任何总体本身是有限的情况(或者采样真的很贵)。【备注:比如对美国50个州做聚类】
多变量 A/B 测试: 实验方法或者它们的组合会成为数据点。如果你正在考虑3个维度,每个维度设置4个配置项,那么将拥有12个点。【备注:比如在网页测试中,选择字体颜色、字体大小、字体类型三个维度,然后有四种颜色、四个字号、四个字型】
任何罕见现象的模型,例如地震、洪水。
二、小数据问题
小数据问题很多,但主要围绕高方差:
很难避免过度拟合
你不只过度拟合训练数据,有时还过度拟合验证数据。
离群值(异常点)变得更危险。
通常,噪声是个现实问题,存在于目标变量中或在一些特征中。
三、如何处理以下情况1-雇一个统计学家
我不是在开玩笑!统计学家是原始的数据科学家。当数据更难获取时统计学诞生了,因而统计学家非常清楚如何处理小样本问题。统计检验、参数模型、自举法(Bootstrapping,一种重复抽样技术),和其他有用的数学工具属于经典统计的范畴,而不是现代机器学习。如果没有好的专业统计员,您可以雇一个海洋生物学家、动物学家、心理学家或任何一个接受过小样本处理训练的人。当然,他们的专业履历越接近您的领域越好。如果您不想雇一个全职统计员,那么可以请临时顾问。但雇一个科班出身的统计学家可能是非常好的投资。
2-坚持简单模型
更确切地说: 坚持一组有限的假设。预测建模可以看成一个搜索问题。从初始的一批可能模型中,选出那个最适合我们数据的模型。在某种程度上,每一个我们用来拟合的点会投票,给不倾向于产生这个点的模型投反对票,给倾向于产生这个点的模型投赞成票。当你有一大堆数据时,你能有效地在一大堆模型/假设中搜寻,最终找到适合的那个。当你一开始没有那么多的数据点时,你需要从一套相当小的可能的假设开始 (例如,含有 3个非零权重的线性模型,深度小于4的决策树模型,含有十个等间隔容器的直方图)。这意味着你排除复杂的设想,比如说那些非线性或特征之间相互作用的问题。这也意味着,你不能用太多自由度 (太多的权重或参数)拟合模型。适当时,请使用强假设 (例如,非负权重,没有交互作用的特征,特定分布等等) 来缩小可能的假设的范围。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03