大数据是传统数据软件应用无法处理的巨大且复杂的数据集。传统软件处理大数据主要的难点在于采集,存储,分析,数据规划,搜索,共享,传输,可视化,查询,更新和信息隐私等方面。通常行业中的大数据是指利用预测分析、用户行为分析或其他高级分析的方法从数据中获取价值,并非特定大小的数据集。
大数据大到无法统计
大数据并非特指多大的数据,但是能被称为大数据的数据集其数据量必然不能太小。
一般来讲,我们通常所使用的衡量数据量大小的最小单位为bit,也叫小b,最常用的单位为Byte,也叫大B。1 Byte =8 bit,再往上按顺序依次为KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB,他们按照进率1024(2的十次方)来计算的,即1 KB = 1024 Bytes ,1 MB = 1024 KB ,以此类推。
目前全球每年产生的数据量已经开始以ZB为单位,而且随着物联网的普及和诸多廉价的数据收集产品诞生,数据增量还将不断加速。全球数据不断爆发的情况下,大数据究竟可以有多大已经超出了我们的想象,而对于大数据的定义也有着多种多样的解释。
大象无形,大数据实在太大了
知名调研机构Gartner认为,大数据是需要重新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。而麦肯锡全球调研公司认为,大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
综合来看不能发现,大数据是一种大到不仅我们无法直接统计和分析,也是让其在各方面都超出传统软件处理能力的存在。那么大数据行业的发展就需要新的工具来帮助处理和解决大数据所面临的种种难题,而最能够帮助大数据发展的无疑就是云计算。
大数据的结构
大数据太大而无法使用传统的软件及工具进行处理,因此想要把大数据这一产业提升并且盈利,那么就在于提高对数据的处理能力,经过处理的数据才能实现增值,云计算对于大数据来讲就是其不可分割的一部分。
大数据和云计算是不可分割的两部分
大数据无法使用单台计算机进行处理,因此必然需要使用分布式架构进行处理。基于云计算的分布式处理、分布式数据、云存储及虚拟化等技术,大数据的处理能力有了显著的提升,而对于这些数据的专业化处理正在形成一个新的行业。
一般来讲,大数据包括了结构化、非结构化和半结构化数据,目前数据的绝对主体是非结构化数据,一般来讲,企业中的数据超过80%都是非结构化数据,而且其增长速度还在不断攀升,在云计算的帮助下,更难处理的非结构化数据开始逐步被利用起来,各行各业中大数据的地位也在提升。
在多维角度来看,大数据可以表示为一种张量,通过基于张量的计算,如多线性空间学习的方法来进行处理会变得更为有效。同时,如MPP数据库、数据挖掘、分布式文件系统、分布式数据库、机器学习等技术都可以对大数据的处理有所帮助。
大数据的主体是非结构化数据
而细致来看,大数据可以分为三个层面,理论、技术和实践。理论是认知大数据的必经途径,也是其被认可接受和传播的基础;技术是大数据价值体现的必要手段和发展的基础;而实践则是大数据价值的最终体现,也是大数据发展前景的体现。
3大数据的价值
大数据的价值
随着数据量的不断增加,以大数据为驱动促进业务增长的模式越来越适用于各个行业领域中,大数据是这个时代的产物,也是这个时代最有价值的部分之一。
阿里巴巴的创始人马云此前已经提到,未来并不是IT时代,而是DT时代,也就是Data Technology数据科技的时代。大数据的价值不在于大,而在于利用大量数据来获取数据背后的信息,大量的数据为用户提供了找到市场发展规律的机会,让用户在市场竞争中获得先人一步的决策力。
DT时代的大数据价值所在
目前,大数据常常被视为企业决策者的利器。针对消费者提供产品及服务的企业可以利用大数据进行精准营销,中小型企业可以利用大数据进行企业转型,而传统企业则可以利用大数据确定企业未来的主要发展方向,将优秀力量集中获得让企业焕发新生。
大数据对于企业的价值还在于迅速找到企业存在的问题、故障以及缺陷的根源,帮助企业节省开支。及时的发现企业外部环境问题,亡羊补牢;确定最佳定价方案,帮助企业获得最大利润;精准分析企业客户购买习惯,稳固客户关系;利用数据挖掘和分析避免商业陷阱。
尽管大数据的价值有这么多,但是大数据并不能代替决策者。大数据只是一个工具,能够善于运用工具的决策者才能带领企业发展的更为顺利
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13