Python做文本挖掘的情感极性分析
「情感极性分析」是对带有感情色彩的主观性文本进行分析、处理、归纳和推理的过程。按照处理文本的类别不同,可分为基于新闻评论的情感分析和基于产品评论的情感分析。其中,前者多用于舆情监控和信息预测,后者可帮助用户了解某一产品在大众心目中的口碑。目前常见的情感极性分析方法主要是两种:基于情感词典的方法和基于机器学习的方法。
1. 基于情感词典的文本情感极性分析
笔者是通过情感打分的方式进行文本情感极性判断,score > 0判断为正向,score < 0判断为负向。
1.1 数据准备
1.1.1 情感词典及对应分数
词典来源于BosonNLP数据下载http://bosonnlp.com/dev/resource 的情感词典,来源于社交媒体文本,所以词典适用于处理社交媒体的情感分析。
词典把所有常用词都打上了唯一分数有许多不足之处。
不带情感色彩的停用词会影响文本情感打分。由于中文的博大精深,词性的多变成为了影响模型准确度的重要原因。一种情况是同一个词在不同的语境下可以是代表完全相反的情感意义,用笔者模型预测偏最大的句子为例(来源于朋友圈文本):
有车一族都用了这个宝贝,后果很严重哦[偷笑][偷笑][偷笑]1,交警工资估计会打5折,没有超速罚款了[呲牙][呲牙][呲牙]2,移动联通公司大幅度裁员,电话费少了[呲牙][呲牙][呲牙]3,中石化中石油裁员2成,路痴不再迷路,省油[悠闲][悠闲][悠闲]5,保险公司裁员2成,保费折上折2成,全国通用[憨笑][憨笑][憨笑]买不买你自己看着办吧[调皮][调皮][调皮]
里面严重等词都是表达的相反意思,甚至整句话一起表示相反意思,不知死活的笔者还没能深入研究如何用词典的方法解决这类问题,但也许可以用机器学习的方法让神经网络进行学习能够初步解决这一问题。另外,同一个词可作多种词性,那么情感分数也不应相同,例如:
这部电影真垃圾
垃圾分类
很明显在第一句中垃圾表现强烈的贬义,而在第二句中表示中性,单一评分对于这类问题的分类难免有失偏颇。
1.1.2 否定词词典
否定词的出现将直接将句子情感转向相反的方向,而且通常效用是叠加的。常见的否定词:不、没、无、非、莫、弗、勿、毋、未、否、别、無、休、难道等。
1.1.3 程度副词词典
既是通过打分的方式判断文本的情感正负,那么分数绝对值的大小则通常表示情感强弱。既涉及到程度强弱的问题,那么程度副词的引入就是势在必行的。
词典内数据格式可参考如下格式,即共两列,第一列为程度副词,第二列是程度数值,> 1表示强化情感,< 1表示弱化情感。
1.2 数据预处理
1.2.1 分词
即将句子拆分为词语集合,结果如下:
e.g. 这样/的/酒店/配/这样/的/价格/还算/不错
Python常用的分词工具(在此笔者使用Jieba进行分词):结巴分词 Jieba
Pymmseg-cpp
Loso
smallseg
from collections import defaultdict
import os
import re
import jieba
import codecs
“””
1. 文本切割
“””def sent2word(sentence):
“””
Segment a sentence to words
Delete stopwords
“””
segList = jieba.cut(sentence)
segResult = [] for w in segList:
segResult.append(w)
stopwords = readLines(‘stop_words.txt’)
newSent = [] for word in segResult: if word in stopwords:
continue
else:
newSent.append(word) return newSent
1.2.2 去除停用词
遍历所有语料中的所有词语,删除其中的停用词
e.g. 这样/的/酒店/配/这样/的/价格/还算/不错–> 酒店/配/价格/还算/不错
1.3 构建模型
1.3.1 将词语分类并记录其位置
将句子中各类词分别存储并标注位置。
“””2. 情感定位”””
def classifyWords(wordDict): # (1) 情感词
senList = readLines(‘BosonNLP_sentiment_score.txt’) senDict = defaultdict()
for s in senList:
senDict[s.split(‘ ‘)[0]] = s.split(‘ ‘)[1] # (2) 否定词
notList = readLines(‘notDict.txt’) # (3) 程度副词 degreeList = readLines(‘degreeDict.txt’)
degreeDict = defaultdict()
for d in degreeList:
degreeDict[d.split(‘,’)[0]] = d.split(‘,’)[1]
senWord = defaultdict()
notWord = defaultdict()
degreeWord = defaultdict()
for word in wordDict.keys():
if word in senDict.keys() and word not in notList and word not in degreeDict.keys():
senWord[wordDict[word]] = senDict[word]
elif word in notList and word not in degreeDict.keys(): notWord[wordDict[word]] = -1
elif word in degreeDict.keys(): degreeWord[wordDict[word]] = degreeDict[word]
return senWord, notWord, degreeWord
1.3.2 计算句子得分
在此,简化的情感分数计算逻辑:所有情感词语组的分数之和.
定义一个情感词语组:两情感词之间的所有否定词和程度副词与这两情感词中的后一情感词构成一个情感词组,即notWords + degreeWords + sentiWords,例如不是很交好,其中不是为否定词,为程度副词,交好为情感词,那么这个情感词语组的分数为:
finalSentiScore = (-1) ^ 1 * 1.25 * 0.747127733968
其中1指的是一个否定词,1.25是程度副词的数值,0.747127733968为交好的情感分数。
“””3. 情感聚合”””
def scoreSent(senWord, notWord, degreeWord, segResult):
W = 1 score = 0 # 存所有情感词的位置的列表 senLoc = senWord.keys()
notLoc = notWord.keys()
degreeLoc = degreeWord.keys()
senloc = -1 # notloc = -1 # degreeloc = -1
# 遍历句中所有单词segResult,i为单词绝对位置
for i in range(0, len(segResult)):
# 如果该词为情感词
if i in senLoc: # loc为情感词位置列表的序号 senloc += 1 # 直接添加该情感词分数 score += W * float(senWord[i])
# print “score = %f” % score
if senloc < len(senLoc) – 1:
# 判断该情感词与下一情感词之间是否有否定词或程度副词 # j为绝对位置
for j in range(senLoc[senloc], senLoc[senloc + 1]): # 如果有否定词
if j in notLoc:
W *= -1 # 如果有程度副词
elif j in degreeLoc:
W *= float(degreeWord[j])
# i定位至下一个情感词
if senloc < len(senLoc) – 1:
i = senLoc[senloc + 1]
return score
1.4 模型评价
其中大多数文本被判为正向文本符合实际情况,且绝大多数文本的情感得分的绝对值在10以内,这是因为笔者在计算一个文本的情感得分时,以句号作为一句话结束的标志,在一句话内,情感词语组的分数累加,如若一个文本中含有多句话时,则取其所有句子情感得分的平均值。然而,这个模型的缺点与局限性也非常明显:
首先,段落的得分是其所有句子得分的平均值,这一方法并不符合实际情况。正如文章中先后段落有重要性大小之分,一个段落中前后句子也同样有重要性的差异。
其次,有一类文本使用贬义词来表示正向意义,这类情况常出现与宣传文本中,还是那个例子:
有车一族都用了这个宝贝,后果很严重哦[偷笑][偷笑][偷笑]1,交警工资估计会打5折,没有超速罚款了[呲牙][呲牙][呲牙]2,移动联通公司大幅度裁员,电话费少了[呲牙][呲牙][呲牙]3,中石化中石油裁员2成,路痴不再迷路,省油[悠闲][悠闲][悠闲]5,保险公司裁员2成,保费折上折2成,全国通用[憨笑][憨笑][憨笑]买不买你自己看着办吧[调皮][调皮][调皮]2980元轩辕魔镜带回家,推广还有返利[得意]
Score Distribution中得分小于-10的几个文本都是与这类情况相似,这也许需要深度学习的方法才能有效解决这类问题,普通机器学习方法也是很难的。
对于正负向文本的判断,该算法忽略了很多其他的否定词、程度副词和情感词搭配的情况;用于判断情感强弱也过于简单。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06