提升数据建模的10种技术措施
随着企业有了能够轻松访问和分析数据以提高性能的新机会,数据建模也是变形的。数据建模不仅仅是任意组织数据结构和关系,还必须与最终用户的需求和问题联系起来,并提供指导,帮助确保正确的数据正确使用正确的方法获得正确的结果。以下描述的十种技术将帮助人们提高数据建模水平及其对业务的价值。
1了解所需的业务需求和成果
数据建模的目的是帮助组织更好地运作。作为数据建模者,收集,组织和存储用于分析的数据,用户只能通过了解其企业需求来实现这一目标。正确地捕获这些业务需求,以了解哪些数据优先,收集,存储,转换,并提供给用户通常是最大的数据建模挑战。所以,不能说:通过向人们询问数据中需要的结果,清楚地了解需求。然后开始组织你的数据。
2可视化数据建模
盯着无数行和列的字母数字条目不太可能为人们带来启示。大多数人都希望通过图表更加舒适地查看数据,可以快速查看任何异常情况,或使用直观的拖放屏幕界面快速检查和连接数据表。像这样的数据可视化方法可以帮助你清理数据,使其完整一致,并避免出现错误和冗余。它们还可以帮助你发现对应于相同现实生活实体(例如“客户ID”和“客户参考”)的不同数据记录类型,然后将其转换为使用常用的字段和格式,从而更轻松地组合不同的数据源。
3从简单数据建模开始,然后扩展
由于大小,类型,结构,增长率和查询语言等因素,数据可能会迅速复杂化。开始时保持数据模型小而简单,可以更容易地纠正任何问题或错误的转折。当你确定自己的初始模型是准确和有意义的时,可以引入更多的数据集,消除任何不一致的情况。你应该寻找一种可以轻松开始的工具,但是以后可以支持非常大的数据模型,还可以让你从不同的物理位置快速“混搭”多个数据源。
4将业务查询分解为事实、维度、过滤器和订单
了解如何通过事实、大小、过滤器和订单这四个元素定义业务问题,将有助于你以更容易提供答案的方式组织数据。例如,假设你的组织是一家在不同地点设有商店的零售公司,并且你想知道去年哪些商店销售的产品最多。在这种情况下,其事实将是整个历史销售数据(所有商店在过去“N”年的每一天所有商品的所有销售量),所考虑的维度是“产品”和“商店位置”,过滤器是“前12个月”,订单可能是“给定产品销售额下降的五大门店”。通过使用单独的表格来组织数据,以了解事实和维度,你可以方便分析,以便在每个销售期间查找顶级销售人员以及回答其他商业智能问题。
5使用需要的数据,而不是所有可用的数据
使用巨大数据集的计算机很快就会遇到计算机内存和输入输出速度的问题。然而,在许多情况下,只需要很少的数据来回答业务问题。在理想情况下,你应该能够在屏幕上勾选方框,以指出要使用哪些部分数据集,从而避免数据建模浪费和性能问题。
6提前计算以防止最终用户分歧
数据建模的一个关键目标是建立一个真相的版本,用户可以向他们询问他们的业务问题。虽然人们对于如何使用答案可能有不同的意见,但是对于基础数据或用于得出答案的计算,应该不会有任何异议。例如,可能需要进行计算以汇总每日销售数据以获取每月数据,然后将其进行比较以显示最佳或最差的月份。而不是让每个人都采用他们的计算器或其电子表格应用程序(这是用户错误的常见原因)进行计算,你可以提前设置此计算来避免问题,作为数据建模的一部分,并使其在最终用户的信息中心中可用。到他们的计算器或电子表格应用程序(用户错误的共同原因),您可以避免问题,提前建立这个计算作为您的数据建模的一部分,并使其在仪表板的最终用户。
7在继续之前验证数据建模的每个阶段
在进行下一步之前,应检查每个操作,然后从业务需求的数据建模优先级开始。例如,必须为数据集选择一个称为主键的属性,以便数据集中的每个记录可以通过该记录中主键的值唯一标识。假设你选择“ProductID”作为上述历史销售数据集的主键。通过比较数据集中“ProductID”的总行数与完全不同(不重复)行计数,可以验证是否令人满意。如果两个计数匹配,则可以使用“ProductID”来唯一标识每个记录;如果没有,请查找另一个主键。相同的技术可以应用于两个数据集的连接,以检查它们之间的关系是一对一还是一对多,并且避免导致过于复杂或无法管理的数据模型的多对多关系。
8寻找因果关系,而不仅仅是相关性
数据建模包括使用建模数据的方式的指导。最终用户为自己获取商业智能提供了一个很大的进步,同样重要的是避免错误的结论。例如,也许他们看到两种不同产品的销售情况似乎一起上升和下降。一个产品的销售是否导致另一个产品的销售(一个因果关系),或者是因为经济或天气等另外一个因素而一起上升(简单的关联)呢?令人困惑的因果关系可能导致产生错误或不存在的机会,从而浪费业务资源。
9使用智能工具提供重型功能
在分析开始之前,更复杂的数据建模可能需要编码或其他操作来处理数据。但是,如果软件应用程序可以为您提供“重型”功能,则可以免除你了解不同编程语言的需要,并让你将时间花在企业的其他有价值的活动上。合适的软件产品可以促进或自动化数据ETL(提取,转换和加载)的所有不同阶段。可以在视觉上访问数据,而无需任何编码,不同的数据源可以使用简单的拖放界面进行组合,甚至可以根据查询类型自动完成数据建模。
10使数据模型进化
业务数据模型从来没有被记录过,因为数据源和业务优先级不断变化。因此,你必须计划随时间更新或更改。为此,将你的数据模型存储在存储库中,使其易于访问进行扩展和修改,并使用数据字典或“准备参考”,并提供有关每种数据类型的目的和格式的清晰最新信息。
更好的数据建模带来更大的商业利益
在盈利能力,生产率,效率,客户满意度等方面的业务绩效可以让组织从数据建模中受益,从而帮助用户快速轻松地获得业务问题的答案。主要的成功因素包括链接到组织需求和目标,使用工具来加快准备数据的步骤,以解决所有查询,并使优先级变得更加简单。一旦满足这些条件,你和你的业务(无论是小型,中型还是大型)都可以期待数据建模能带来重要的业务价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31