数据驱动业务决策的5个步骤
想要改善你的决策过程?如今,如果你想保持市场竞争力,只靠直觉和本能已经不够了。大多数组织认识到数据应该是组织决策的核心。
凭借几乎所有业务领域的技术,你可以使用其生成的数据来确切了解组织中发生的情况,并通过测试不同的方案和成功使用信息来使你的业务更加灵活。
你不一定必须成为数据科学家才能获得回报。你可以采取一些简单的步骤,使业务决策更具数据驱动力。
数据本能:从数据驱动的决策中获得的收益
如今,世界各地的顶级公司都使用数据来决定他们的业务。他们在行业领先的原因是因为他们通过将重点转移到数据而不是依靠商业头脑比对手更有战略优势。
使用数据决策的公司排名比较靠前,而大多数基于直觉或经验(70%)的企业是落后者。换句话说,更多做出数据驱动决策的组织比那些由本能驱动决策的企业更加处于市场的前沿。
以下只是通过成为数据驱动型组织而获得的一些东西:
·利用数据的优势在具有前瞻性思维的公司中保持竞争力。
·数据驱动的公司更加以客户为中心,深入了解客户和旅程。
·具有成本效益-存储大量数据可能成本高昂,尤其是仅将其用于合规性时。将数据放在工作中,并将其用于组织的优势。
·检测新的或错过的机会,帮助组织发展和定期改进。
·更灵活,更好地应对市场/创新。
不要让数据把你带入歧途
不得不说,你掌握的大量数据不一定与你开展业务的方式相辅相成。数据与你可以从中吸取的洞察力一样有价值,获得大量不相关的信息很容易发现自己被误入歧途。
从中吸取真正价值的关键在于确定要使用的数据。你使用的指标(衡量的信息,如网页浏览量或转化次数)将决定数据驱动决策的成功率。你应该看的是那些对其增长至关重要的业务领域。
这些是你应该问的一些问题:
·数据来自哪里,是真正具有代表性吗?
·如果你根据数据作出假设,这些假设是否仍然会受到不同的结果的影响?
·自变量会改变结果吗?
·可以使用不同的分析方法吗?
如何实现更多的数据驱动的5个步骤
考虑到这一点,让我们变得更加数据驱动,我们应该怎样?
步骤1:策略
数据驱动的决策始于重要策略。这有助于通过删除对你的业务无效的所有数据来集中注意力。
首先,确定你的目标-数据可以为你做什么?也许你正在寻找新的潜在客户,或者你想知道哪些流程正在运作,哪些流程是不正常的。
看看你的业务目标,然后围绕它们制定一个策略-这样你就不会因为大数据提供的所有可能性而变得迷惑。
步骤2:确定关键区域
数据从各个方向流入组织,从客户交互到员工使用的机器。管理多种数据来源必不可少,并确定哪些领域将带来最大收益。什么领域是实现你的首要业务战略的关键?例如,这可能是财务或运营。
步骤3:数据定位
现在,你已经确定了哪些领域的业务将从分析和想要解决的问题中获益最多,现在是时候确定哪些数据集将回答所有这些问题。
这涉及到你已经拥有的数据,并找出哪些数据源提供最有价值的信息。这将有助于简化数据。请记住,当不同的部门使用单独的系统时,可能导致不准确的数据报告。最好的系统可以对来自不同来源的数据进行交叉分析。
根据你的业务目标定位数据将有助于降低数据存储的成本,更不用说确保你获得最有用的见解。
注意成本会让公司董事会感到满意,只关注你真正需要的数据就可。
步骤4:收集和分析数据
确定将管理数据的关键人物。这通常是部门负责人。也就是说,最有用的数据将在各级收集,并将来自外部和内部来源,因此你可以全面了解业务发生的情况。
为了有效地分析数据,你可能需要集成系统来连接所有不同的数据源。你需要的技能水平将根据需要分析的内容而有所不同。查询越复杂,你需要的专业技能越多。
另一方面,简单的分析可能只需要Excel的工作知识,例如。一些分析平台提供可访问性,以便每个人都可以访问数据,这有助于团结整个员工队伍,并为更多的组织提供服务。
数据越容易获得,人们越有可能从中获得洞察力。
步骤5:将洞察力转化为行动
你从数据中获取的见解的方式将决定您从中获得的收益多少。
有多种商业智能工具可以将复杂的数据集合在一起,并以一种使你的见解更容易被决策者消化的方式呈现。
当然,这不是关于呈现漂亮的图表,而是以可视化的方式更清晰地呈现出这些见解,使决策者更容易看到需要采取的行动,最终如何在业务中使用这些信息。
让基于数据的课程塑造你的业务
成为数据驱动型组织并不是一朝一夕能建成的,决定使用数据来推动业务决策。而不仅仅是选择最佳的分析工具,帮助你从数据中获得洞察,尽管它们有助于建立正确的技术架构。
这是关于重组组织的文化,以确保每个人都知道数据的价值,以及如何充分利用它。
变革必须来自组织高层,变革企业文化意味着在董事会上获得领导权。让决策者关注的最好办法是展示分析如何为组织带来价值。
当你开始将这些见解直接应用于业务时,在决策过程中使用它们,并将其嵌入到组织中。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21