机器学习和数据分析在高性能计算和企业管理云平台发挥举足轻重的作用
计算能力的提升有望给高性能的计算空间和企业最终数据中心基础架构的建立带来重大的变化。全球多个国家正在建立一个系统。这个系统一旦建成,预计是目前20 千兆次能力的50倍。
并在能源效率和占用的物理空间等领域带来相应的改进。工程师和科学家使用越来越多复杂的应用程序到这个系统中来,但是这个系统如此昂贵以至于我们不能仅仅在特定的条件下才可以使用到它。
与此同时,更高级别的数据分析和机器学习的出现正在迫使美国在进入百万兆级运算方面做出一些改变。
这些改变从软件的系统开发到一些有竞争力的中国公司都发挥着重要的作用,并且这些中国公司正在积极的推进百万兆级运算。
上星期在德克萨斯州奥斯汀市谈人工智能时代。从国家实验室到云计算项目首席技术执行官,概述了 企业管理云平台未来几年内在云计算系统的相关工作。
在他的谈话也提及到过去 18 个月中一些主流科学家脑中出现的关于数据分析和机器学习方法的思考,和企业实现云计算的实现做出的准备。
盖斯特说,"在未来,会有越来越多的驱动力量,一台机器可以解决更为广度的问题。这就要求机器学习要在计算机内部进行分析而不是依靠人为判断再去进行分析。
大量数据的生成持续不断的扩大数据规模,驱使移动设备的普及到云计算的迅速生成。高性能计算的组织和企业正在寻求一个方法去收集,储存和实时的去分析这些数据。以便企业可以立即的去研究这些数据后再做决策。
机器学习和人工智能 (AI) 是越来越多地被用于帮助加速收集和分析数据。此外,人工智能,机器学习是是很多新兴领域的核心技术,从新的网络安全技术到无人驾驶技术。
盖斯特说;在企业管理云平台中数据分析和机器学习发挥着越来越重要的作用。在为百亿亿次计算开发的应用程序中,数据分析和机器学习的重要性得到了充分的印证。
例如, 应用程序的开发试图涉及到一系列领域, 从气候和化学到基因组学, 地震和宇宙论。还有一个项目正在进行, 以及癌症研究和预防的应用程序的开发, 越来越多的工作使用到了数据科学和机器学习。
此外,企业管理云平台成立于2016年,最初开发的四个应用涉及面是相对较窄的。例如;如何高效的去计算百亿亿次离子和粒子的精准度的应用的开发、在线数据分析的问题和数据科工作在科技行业的不断提高等方面的应用开发。
在过去的几个月中,该程序添加了五个协同设计中心,为了启动百亿亿次应用程序采用了目标曲线和组合函数的方法。
他说新中心的建立是为了处理更加具体的数据分析和机器学习所带来的的挑战。更普遍的意义是, 这两种新兴技术也对企业管理云平台正在寻求的系统类型产生影响, 比如IBM、英特尔和英伟达的供应商,以及在百亿亿次竞赛中与中国日益激烈的竞争。
企业管理云平台正在寻找的系统不仅能够百亿亿次级的计算, 而且可以被广泛的组织使用,。这个想法产生于在高性能计算的开发和使用的环境下将会层叠到企业和大宗商品机器中,盖斯特说。
他们应该可以用于广泛的用户, 而不仅仅是少数 "英雄程序员"。鉴于此, 企业管理云平台正在寻找供应商开发能够满足程序中规定的各种要求的系统,。
如启用极端并行性, 创建新的内存和存储技术, 可以处理缩放、可靠性高和能耗在20到30兆瓦之间等一系列规定。
然而,这样做的目的并不是一味的去创建激进的设计或是创建先进的结构体系。盖斯特说;如果供应商可以创建百亿亿次的系统, 而不一味追求激进的解决方案,那便是最好的。
"事实上, 我们可能更喜欢这一点。同时,企业管理云平台的官员也明白, 到2021按照计划开发第一台百亿亿次的计算机, 将必须采取一些新颖的设计和架构方法。但是他们希望在接下来的2023这样的系统之后, 不需要采取这种激进的做法。
盖斯特补充说,"我们不是在试图制造一个特技的机器,"这些系统的目标不仅仅是他们能生产多少次浮点运算, 而是他们背后能生产多少科学。"我们想建立一些对国家和科学有用的东西。
这所以这样去要求,是因为目前正在处于一个关键的阶段。美国和中国如何接近百亿亿次计算。
中国已经有三个百亿亿次项目正在进行中, 一个叫做 Tianhe-3 的原型,计划准备就绪。关于中国的努力的大部分讨论都是关于中国政府投资项目的资金数额。同时, 中国也不像美国一样受到传统技术的限制,盖斯特说到。
盖斯特说;中国可以建立一次性的芯片,并且低耗能、高性能还不用担心应用程序的遗留问题-不在智能手机或是服务器市场上运营。
对于美国供应商来说, 他们必须构建能够运行广泛的新的和传统的应用程序系统, 以及可以在其他系统中使用的组件。他们必须能够处理无数的工作量, 这就是为什么企业管理云平台在数据分析和机器学习领域不断创新的原因了。
他说, 这些越来越重要的技术将在高性能计算和企业计算以及消费者设备计算中得到广泛应用。供应商知道, 在考虑百亿亿次计算的革新时, 他们必须考虑到这一点。
新兴技术的应用将在广泛的技术领域,至关重要,所以在体系结构中的创新需要能够满足世界超级计算和企业世界。例如,在高性能计算(HPC)空间中,组织转向机器学习加快他们正在为这种任务作为质量保证的模拟工作负载,盖斯特说。
"在美国, 这生态系统的健全是非常重要的," 盖斯特说。"如果你一年只卖两台机器,那么这个生意你就不要做了,结果是你一定会破产的。因此, 这些芯片和这些技术需要扩展到新的市场。
这就是美国必须与之抗争的, 以确保我们能够满足高性能的要求。这就是为什么我们将这种扩展转化为数据分析和机器学习, 这似乎在高性能计算的世界有一个更大的市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31