大数据分析不是巨大的负担,而是潜在的黄金
大数据分析是对海量数据的分析技术。大数据时代中,大数据的处理流程包含了数据采集、数据存储、数据分析以及数据挖掘等多个步骤,大数据分析是让无用数据提现价值的关键一步。
大数据分析的特点
大数据分析是利用多种手段从海量数据之中获取智能化、深入化而且更有价值的信息。
大数据分析与数据挖掘有着本质的区别,大数据分析需要大量的数据为基础,而数据量越大算法要求则越低。用于数据分析的数据类型并无固定要求,多为动态增量数据以及存储数据。在技术上,大数据分析技术已经比较稳定,目前不存在太多突破点。
数据挖掘又名资料探勘、数据采矿则是更深层次的理念,其为数据库发现的一个步骤。虽然也需要利用算法从数据中发现信息,但数据挖掘算法与数据大小无关,复杂度较大要求更高;而且数据挖掘需要基于结构化处理后的数据进行,其算法需要不断探索和演进。
大数据分析帮数据提现价值
由于大数据存在5V的特点,即数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)和真实性(Veracity)。这些特性的存在再加上大数据不断增长的复杂性,必须要有可靠的分析方法来剥离无用数据的干扰,寻找到有价值的关键信息。
大数据分析的方法
大数据分析最常见的方法有五种,可视化分析、数据挖掘算法、预测性分析、语义引擎以及数据质量和数据管理。
可视化分析是让大数据更贴近普通用户的一种手段。大数据分析的最终服务客户一般都是不懂大数据分析的人,对于他们来讲,大数据分析最重要也是最基础的就是可视化分析。借助可视化分析,普通用户可以直观的洞悉大数据特点,简单获取大数据分析成果。可视化分析降低了大数据分析的门槛,也增加了大数据的适用性。
大数据分析的方法
数据挖掘算法是大的数据分析的理论核心。数据挖掘算法基于各种不同类型和格式的数据进行深度挖掘,让数据体现出本身所具有的特点。其可以深入数据内部,挖掘出最具有公共价值的部分。而且,数据挖掘算法使得大数据处理的速度得到了质的提升,在保障大数据时效性的同时将结论尽早的提供给用户。
预测性分析是大数据分析最重要的应用领域之一。大数据的最终目标之一是进行市场及行为预测,帮助企业或个人用户能够把握相关领域动向。预测性分析正式利用大数据中挖掘出的特点,建立相应的数据模型,然后把新的数据代入模型,预测未来的数据。
数据建模 合理预测
语义引擎被用来应对非结构化数据多元化给数据分析带来的挑战。当前大数据的增长速度达到了一个新高度,其中绝大多数的数据是非结构化数据,传统分析工具拿非结构化数据束手无策的情况下,基于人工智能的语义引擎可以从数据中主动提取有效信息,提炼数据数据后进行分析会更为快捷有效。
高质量的数据和管理是大数据分析中不可或缺的一部分。在大数据分析中,一般会采用数据仓库进行管理,多维分析及多角度展示的数据按照特定模式进行存储并建立关系型数据库,无论在学术研究还是商业应用领域都能够保障分析结果的真实性和价值。
大数据分析还有很多方法,其最终目的是实现数据价值,利用大数据分析的手段让大数据不再是巨大的负担,而是潜在的黄金。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20