
Hadoop:一个分布式系统基础架构,由Apache基金会开发,用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力告诉运算和存储。
Hadoop是项目的总称,主要是由分布式存储(HDFS)、分布式运算(MapReduce)组成。
HIVE是一个SQL解析引擎,它将SQL语句转译成M/RJOB 然后再Hadoop执行,与传统数据库完全不同,只是采用了同样的sql界面。
2、hadoop基本操作
2.1 查看指定目录下内容
Hadoop dfs –ls[文件目录]
如:hadoop dfs –ls /user/war/wangkai.pt
2.2 打开某个已存在的文件
Hadoop dfs –cat [file_path]
如:hadoop dfs –cat /user/war/wangkai.pt/test.txt
2.3 删除某个文件
hadoop fs -rm hdfs://ns4/user/mart_vdp/app.db/app_vdp_jdb_jw_store_task_rules/store_task.txt
2.4 将本地文件存储至hadoop
Hadoop fs –put [本地地址]
3、hive基本操作
3.1 进入hive
登陆hadoop服务器后,输入 hive(这处理的有点慢,多等会)
显示成hive>
>
后,即表示进入到hive中
3.2 hive基本操作
3.2.1 建表
语句:
CREATE [EXTERNAL] TABLE table_name
(col_name data_rype,.....)
[PATTITIONED BY (col_name data_type)]
[ROW FORMAT DELIMITED
[FIELDS TERMINATED BY '/t' ]
[STORED AS TEXTFILE]
举例:
create table input_data_test #表名
( item_sku_id string , #字段名称 字段类型
provider_code string ,
delivery_center string ,
stock bigint )
COMMETN '注释:XXXXX' #表注释
PARTITIONED BY ("ACTIVE") #分区表字段(如果文件非常大的话,采用分区表可以快速过滤出按分区字段划分的数字)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '/t' #字段之间是按照什么分割开的,这个例子是中按照tab键分开,还可以使用其他字符,如|分开
STORED AS TEXTFILE; #用哪种方式存储数据
3.2.2 查看库
语句:show databases;
使用某一个库:use database;
3.2.3 查看表
语句:show tables
可以使用模糊查询:show tables '*TMP*'
查看表有哪些分区: show partitions table;
使用某一个表:use table;
查看表字段:desc table;
3.2.4删除表
Drop table table_name;
3.2.5增加字段:
alter table fdm_cep_ql_service_center_chain add columns (jd_account string);
3.2.6 导入数据
使用load命令将数据导入表中 load操作只是将数据复制/移动至Hive表对应的位置,不会对数据进行任何转换。
语句:
load data [local] inpath 'filepath' [overwrite] into table tablename [partition ]
举例:
load data local inpath '/python/app/task/data/gdm_m03_item_sku_da_06.txt' into table gdm.gdm_m03_item_sku_da;(不带分区)
load data local inpath '/python/app/task/data/no_commission_rules.txt' into table app.app_vdp_nojdb_jw_sku_commission_rules;(带分区)
注:就是普通的insert,只不过数据来源是通过inpath路径找到的,insert之前保证表已建完,并且格式于建表语句要求的格式一致(换行、分隔符等)
3.2.7 查询
1、where 语句
Where语句是个布尔表达式,例如:下面的查询语句只返回销售记录大于10,且归属地属于美国的销售代表。
Select * from sales where amount >10 and region =’US’
注:hive不支持where子句中的IN、EXIST或子查询。
2、基于partition的查询
一般select查询会扫描整个表(除非是为了抽样查询)。但是如果一个表使用partitioned by子句建表,查询就可以利用分区剪枝(input pruning)的特性,只扫描一个表中他关心的那一部分。
Hive当前的是实现是。只有分区断言出现在离from子句最近的那个where子句中,才会取用分区剪枝。
例如,如果表app_vdp_base_jdbang_income_ma_sum使用date列分区,一下语句只会读取分区为‘2016-06-01’的数据。
Select *
from app_vdp_base_jdbang_income_ma_sum
where tx_dt>=’2016-06-01’ and tx_dt <=’2016-06-31’
3、limit查询
Limit可以限制查询的记录数,查询的结果是随机选择的。下边的查询语句从t1表中随机查询5条记录:
Select * from t1 limit 5;
如果需要查询top多少的数据,则需要使用下面的语句:
查询销售记录最大的5个销售代表:
Select * from sales order by amount desc limit 5;
3.2.8 修改数据
Hive不支持update数据。
同时,hive导入数据的时候不会自动去重。
3.2.9 删除数据
Hive不支持条件删除,只能删除整个表后再重新建。
3.2.10 结果导出
在hive中查询出表数据后,如果数据太多,不好看,可以将数据导出来,然后在本地使用UE等工具查看。此命令在在linux下执行
格式:hive –e ‘查询语句’ > 文件名.txt #将查询语句查询出来的结果导出到txt中
例如:
hive - e 'select * from app.app_vdp_jdbang_jwang_xiadan_detail;' > wangsha1.txt
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02