京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Hadoop有一个名为“HDFS”的分布式文件系统,它的设计目的是提供一个高容错,且能部署在廉价硬件的分布式系统;它的设计参照了Google的GFS(Google分布式文件系统);它能支持高吞吐量,适合大规模数据集应用。
HDFS上的文件被划分为以固定块大小的多个分块(默认为64MB,如此大是为了最小化寻址开销),每个块作一个独立的存储单元。
这样做有两个好处:第一可以存储容量大于单一磁盘容量的文件;第二大大简化了存储子系统的设计(只需要管理块,而且块的元数据并不需要与块一同存储)。将每个块复制到少数几个独立的机器上(默认为3个),可以确保在块、磁盘或机器发生故障后数据不会丢失(即发现一个块不可用,系统会从其他地方读取另一个复本,同时重新复制该复本到一台正常的机器上)。下图展示了这些特性。
HDFS集群由一个NameNode(管理者)和多个dataNode(工作者)组成。HDFS解决了单点问题,HDFS集群的管理者是非常重要。NameNode管理文件系统的命名空间,它维护着文件系统树及整颗树内所有的文件和目录,同时也记录着每个文件中各个块到DataNode。同时,NameNode(管理者)包含主要节点(Primary)和备份节点(Stand by),如果Primary出现问题,Stand By可自动接替Primary继续工作。DataNode主要负责响应文件系统客户端发出的读写请求,同时还将在NameNode的指导下负责执行文件的创建、删除以及复制。
Hadoop的MapReduce(分布式计算模型)处理框架正是基于HDFS构建,它充分利用集群的并行优势来处理存储在HDFS上的数据文件。一个MapReduce任务在集群上以任务跟踪(TaskTracker)执行。每个TaskTracker被Job监控,当发现一个TaskTracker执行失败是,JobTracker就会将该任务分配到其他机器上运行。
在运行MapReduce作业经常会遇到各种问题,为了能进行必要的优化,理解HDFS原理还是很有必要的。下面介绍比较常见的一种情况:小文件如何拖累MapReduce作业及可采取的优化措施。
在MapReduce作业中,Hadoop将其输入数据划分成等长的小数据块,称为输入分片。Hadoop为每个分片构建一个map任务,或者说每一个map操作只处理一个输入分片。每个分片被划分为若干个记录,每条记录就是一个键值对,map一个接一个地处理记录。输入分片包括自己的大小和存储位置,存储位置供MapReduce系统将map任务尽量放在分片附近,分片大小用于排序分片,以便优先处理最大的分片,从而最小化作业运行时间。
在一般的MapReduce作业中,使用最多的输入数据格式通常是存储在HDFS上的文件。Hadoop自带的FileInputFormat类是所有使用文件作为其数据源实现的基类。它提供两个功能:一个用于指出作业的输入文件位置;一个是输入文件生成分片的实现代码段。
一个文件如果大于HDFS的块大小,那么它会被分割成多个块,存储在不同的位置。如果分片的大小大于HDFS的块大小,那么一个分片就会从不同位置读取,需要通过网络传输到map任务节点,与使用本地数据运行整个map任务相比,这种方法效率更低。另一方面,如果分片切分得太小,那么管理分片的总时间和构建map任务的总时间将决定作业的整个执行时间。因此,对于大多数作业来说,一个合理的分片大小趋向于HDFS的一个块的大小,即64MB。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11