SPSS分析技术:最小一乘法;制造企业如何合理安排生产计划
最小二乘法的原理是以预测值和实测值之差(残差)的平方和达到最小作为判断模型优劣的评判标准,应用十分广泛。没有放之四海而皆准的真理,最小二乘法同样不是万能的,它也有自身的弱点,最主要的缺点就是对强影响点(极端数据值)特别敏感。大家可以想象,最小二乘法评价模型好坏的标准是残差平方和,因此,绝对值越大的残差(极端值),平方之后,该数据值的影响就会被放得更大,从而导致回归线会明显偏向强影响点。因此,在存在异常值(极端值)时,可以考虑采用其它的回归模型拟合方法。本篇文章介绍的就是其中一种替代性方法,最小一乘法。
最小一乘法的原理其实很简单,就是将最小二乘法中考察的残差平方和换成残差绝对值,这样可以在一定程度上减小极端值(异常值)对模型趋势的影响力。由于原理简单,本篇文章就不在原理上多费笔墨,直接用例题来介绍如何使用最小一乘法,以及它的效果如何。
应用实例
超耗是制造企业都不愿意看到额外成本支出,特别是快消品类的制造企业,提高生产稳定性,减低超耗成本直接关系到企业的生产成本。某国际知名的食品公司在中国投巨资建设了一家高度自动化的熟食制造企业,在产品调试过程中超耗异常严重,所以计划部门在前期物料准备时都按仓库的最大存储量备货。生产逐步稳定以后,计划部门希望能够通过对前期数据的分析,找到合理的原料储备量,这样既能够减低原料过期风险,也能够减少滞留在原料上的生产成本。已知该工厂生产的产品由5种原料构成,但是成本主要受其中两种原材料的影响,为及时调整生产,协调库存,计划部门收集了一批产品产量与两种原材料消耗量的数据,希望建立原材料消耗量与产品产量间的回归方程,用于生产原料预测和采购参考。
分析思路
案例共有两个自变量(两种生产原料),一个因变量(产品产量)。根据常识可知,标准化生产的产品都是固定规格的,因此原料和产量间的关系是非常明确的线性关系,但是由于生产线上残次品,生产工艺缺陷原因造成的物料损耗等必然超耗的存在,每种原料的真实使用量与产品规格内原料比例存在差异。这里的超耗可以分成两种情况,如果是由生产线不稳定引起的,那么超耗的波动是很大的,而且时高时低;如果是由工艺缺陷引起的超耗,那么这部分损耗在工艺缺陷没有改进取值会一直稳定的存在。根据以上的分析,可以先对数据进行多元线性回归分析,然后与原有规格比例对比。
线性回归分析
线性回归分析的SPSS操作过程已经在前面介绍过了(回顾:数据分析技术:多重线性模型;也难也不难的建模从这里开始吧!),这里省略操作步骤,直接解释结果。
由上表的分析结果可知,两种原材料都和产品产量有线性关系,相应的二元线性回归方程为:
为了观察数据分布情况和回归方程的拟合情况,绘制两种原材料消耗量与产品产量之间散点图:
从上图可以看出,两种原料消耗量和产量间均呈较明显的线性关系,图中还分别绘制出采用最小二乘法拟合出的两个自变量回归方程的回归线。但其中原料1和原料2都存在一些数据点偏离主要趋势较远的情况出现,这也充分体现了新生产线生产过程不稳定的特点,偶尔出现生产故障导致的原料消耗过多,在回归模型中表现为强影响点(异常值)。由于后期生产会越来越稳定,在保证生产的前提下,原料的使用量受极端值的影响情况会越来越少,因此可以考虑降低极端值对回归曲线的影响力,采用最小一乘法拟合线性模型。
操作步骤
1、选择菜单【分析】-【回归】-【非线性回归】,在跳出的对话框中进行如下操作。在因变量框中选择产量,在模型表达式框中输入二元线性回归方程a+b1*x1+b2*x2。由于线性回归模型比较简单,可以将模型的三个参数初始拟合值都选为1。
2、由于我们希望对数据进行最小一乘法拟合,所以还需要进行损失设置。点击右上角的【损失】按钮,在跳出的对话框中进行如下操作。
3、点击继续,完成设置,然后点击确定,输出结果。
结果分析
由于最小一乘法在统计理论上无法进行最小二乘法那样严密的推导,所以分析结果非常简单,仅给出了迭代计算过程,最终迭代终止时的参数值即为参数估计值。下表是结果输出的迭代计算记录表,进行了14次迭代计算。
从最后的迭代计算结果可知,最小的残差绝对值之和为1029. 896。根据第14次的结果,可以写出生产数据经过最小一乘法拟合之后,得到的回归方程结果为:
与最小二乘法得到的模型相比,三个模型参数的估计值都有很大变化,特别是常数项,从124减少为9.441。究竟哪个模型更为合理?由于过往用于判断模型效果的决定系数、剩余标准差等指标都是基于最小二乘法推导而来,因此无法使用它们来判断。不过我们可以通过残差分布图来直观判断两种结果的效果。
从散点图可知,对于大部分纪录,最小一乘法的预测残差都要小于最小二乘法残差,这说明一乘法模型对大部分散点的拟合效果是比二乘法好的。注意红框中的两个数据点,最小一乘法的残差明显大于最小二乘法的,这说明最小一乘法对于强影响点(极端值)更有耐受力。我们可以做出下面的结论:最小一乘法拟合的模型对大多数散点的拟合效果比最小二乘法拟合的模型好,但对于个别强影响点的拟合效果是更差的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31