SAS中的协方差分析
所谓的协方差分析,就是在方差分析的基础上加上协变量这一额外因素,而方差分析则只考虑组变量这一因素。协变量可以有一个,也可以有多个。
在这篇文章中,我只讲述单变量的协方差分析。在医学上通常用来判断治疗前后带来的差异性结果是否与治疗前的结果是否存在线性关系,如果存在线性关系,则通过线性模型去掉这一因素所带来的影响。
以人体增重为例,假如在服用某种药物之前体重为X,服用药物之后体重为X1,则减肥效果通常是用Y = X - X1来表示。那么X则称之为协变量。因为在比较不同组间的减肥结果的时候我们需要去除服药前体重的不同而带来的误差,协方差模型就是通过对Y和X以及组变量CLASS建立一个线性回归模型,通过模型来求得X的回归系数β,然后通过Y-β(X - X平均值)得到调整之后的Y,通过这一调整,使得由于不同的疗前体重所带来的误差被剔除,相当于使得大家在疗前都处于同一水平上,进而可以以调整后的Y对组间的减肥效果进行方差分析。
在SAS里,可以通过各种过程步来进行求解,例如reg过程、glm过程。
我就选glm过程,以下述数据作为例子简单写一下如何通过SAS来进行协方差分析。
例:
比较三种猪饲料A1,A2,A3对猪增重的影响,测得每头猪的增重(Y)和出生重(X),数据列在表4-3中。问三种饲料对猪增重是否有显著不同的效果?
表4-3 不同饲料对猪增重的影响
首先确定X为出生体重,组变量为class,反应变量为Y,建立回归模型,如下所示:
data tmp;
input x y @@;
class = scan("A1,A2,A3",ceil(_n_/8));
if class ='A1' then do;
k1 =0; k2 =1;
end;
else if class ='A2' then do;
k1 =1; k2 =0;
end;
else do;
k1 =0; k2 =0;
end;
cards;
16 8513 83 11 6512 76 12 80 16 91 14 84 17 90
17 9716 9018 10018 9521 10322 10619 9918 94
22 8924 9120 8323 9525 10027 10230 10532 110
;
run;
ods output ParameterEstimates = stat;
proc glm data = tmp;
model y = x k1 k2;
run;
ods output close;
得到结果如下所示:
模型的x的回归系数在0.05的水平上是明显不为0的,因此可以认为x与y存在线性关系,那么接下来就需要去掉这一因素不同水平差异而带来的变异了。
proc sql noprint;
create table tmp1 as
select a.*,mean(a.x) as mean_X,b.Estimate as beta, y - beta * (a.x - calculated mean_X) as y1 label = "调整后的Y"
from tmp a,stat b
where b.Parameter = 'x';
quit;
可以看到上述sql过程得到调整之后的y,剔除了不同水平差异的X之后,那么接下里就可以进行方差分析了,这里就不再赘述了。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21