
R语言里面的因子
R语言中的因子确实不好理解,很多人都这么觉得。在R语言中,因子(factor)表示的是一个符号、一个编号或者一个等级,即,一个点。例如,人的个数可以是1,2,3,4......那么因子就包括,1,2,3,4.....还有统计量的水平的时候用到的高、中、低,也是因子,因为他是一个点。与之区别的向量,是一个连续性的值,例如,数值中有1,1.1,1.2......可以作为数值来计算,而因子则不可以。如果用我自己的理解,简单通俗来讲:因子是一个点,向量是一个有方向的范围。在R中,如果把数字作为因子,那么在导入数据之后,需要将向量转换为因子(factor),而因子在整个计算过程中不再作为数值,而是一个"符号"而已。因子的水平就是因子的所有不相同的符号的集合。
创建因子的函数介绍如下:
factor(x, levels = sort(unique(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))
levels 用来指定因子可能的水平(缺省值是向量x中互异的值);labels
用来指定水平的名字;exclude表示从向量x中剔除的水平值;ordered是
一个逻辑型选项用来指定因子的水平是否有次序。回想数值型或字符型
的x。
> factor(1:3)
[1] 1 2 3
Levels: 1 2 3
> factor(1:3, levels=1:5)
[1] 1 2 3
Levels: 1 2 3 4 5
> factor(1:3, labels=c("A", "B", "C"))
[1] A B C
Levels: A B C
> factor(1:5, exclude=4)
[1] 1 2 3 NA 5
Levels: 1 2 3 5
函数levels用来提取一个因子中可能的水平值:
> f <- factor(c(2, 4), levels=2:5)
> f
[1] 2 4
Levels: 2 3 4 5
> levels(f)
[1] "2" "3" "4" "5"
因子用来存储类别变量(categorical variables)和有序变量,这类变量不能用来计算而只能用来分类或者计数。因子表示分类变量,有序因子表示有序变量。生成因子数据对象的函数是factor(),语法是factor(data, levels, labels, ...),其中data是数据,levels是因子水平向量,labels是因子的标签向量。
1、创建一个因子。
例1:
>colour <- c('G', 'G', 'R', 'Y', 'G', 'Y', 'Y', 'R', 'Y')
>col <- factor(colour)
>col1 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('Green', 'Red', 'Yellow')) #labels的内容替换colour相应位置对应levels的内容
>col2 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('1', '2', '3'))
>col_vec <- as.vector(col2) #转换成字符向量
>col_num <- as.numeric(col2) #转换成数字向量
>col3 <- factor(colour, levels = c('G', 'R'))
2、创建一个有序因子。
例1:
>score <- c('A', 'B', 'A', 'C', 'B')
>score1 <- ordered(score, levels = c('C', 'B', 'A'));
>score1
[1] A B A C B
Levels: C < B < A
3、用cut()函数将一般的数据转换成因子或有序因子。
例1:
>exam <- c(98, 97, 52, 88, 85, 75, 97, 92, 77, 74, 70, 63, 97, 71, 98,
65, 79, 74, 58, 59, 60, 63, 87, 82, 95, 75, 79, 96, 50, 88)
>exam1 <- cut(exam, breaks = 3) #切分成3组
>exam1
[1] (82,98] (82,98] (50,66] (82,98] (82,98] (66,82] (82,98] (82,98] (66,82]
[10] (66,82] (66,82] (50,66] (82,98] (66,82] (82,98] (50,66] (66,82] (66,82]
[19] (50,66] (50,66] (50,66] (50,66] (82,98] (66,82] (82,98] (66,82] (66,82]
[28] (82,98] (50,66] (82,98]
Levels: (50,66] (66,82] (82,98]
>exam2 <- cut(exam, breaks = c(0, 59, 69, 79, 89, 100)) #切分成自己设置的组
> exam2
[1] (89,100] (89,100] (0,59] (79,89] (79,89] (69,79] (89,100] (89,100]
[9] (69,79] (69,79] (69,79] (59,69] (89,100] (69,79] (89,100] (59,69]
[17] (69,79] (69,79] (0,59] (0,59] (59,69] (59,69] (79,89] (79,89]
[25] (89,100] (69,79] (69,79] (89,100] (0,59] (79,89]
Levels: (0,59] (59,69] (69,79] (79,89] (89,100]
>attr(exam1, 'levels');
[1] "(50,66]" "(66,82]" "(82,98]"
>attr(exam2, 'levels');
[1] "(0,59]" "(59,69]" "(69,79]" "(79,89]" "(89,100]"
>attr(exam2, 'class')
[1] "factor"
#一个有序因子
> x <- factor(rep(1:5,3))
> ordered(x,labels = c('a1','a2','a3','a4','a5'))
[1] a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5
Levels: a1 < a2 < a3 < a4 < a5
关于因子就说到这里,实际用的非常少!对于逻辑数据以后会遇到再说,就不专门讲了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07