许多很有趣的研究都会涉及交互项的预测变量。以mtcars数据框中的汽车数据为例,若你对汽车重量和马力感兴趣,可以把它们作为预测变量,并包含交互项来拟合回归模型,参见代码清单8-5。
你可以看到Pr(>|t|)栏中,马力与车重的交互项是显著的,这意味着什么呢?若两个预测变量的交互项显著,说明响应变量与其中一个预测变量的关系依赖于另外一个预测变量的水平。
因此此例说明,每加仑汽油行驶英里数与汽车马力的关系依车重不同而不同。
预测mpg的模型为 mpg=
49.81-0.12×hp-8.22×wt +
0.03×hp×wt。为更好地理解交互项,你可以赋给wt不同的值,并简化等式。例如,可以试试wt的均值(3.2)
,少于均值一个标准差和多于均值一个标准差的值(分别是2.2和4.2) 。若wt = 2.2,则等式可以化简为 mpg=
49.81-0.12×hp-8.22×(2.2) + 0.03×hp×(2.2) = 31.41-0.06×hp;若wt =
3.2,则变成了 mpg= 23.37-0.03×hp;若wt = 4.2,则等式为 mpg=
15.33-0.003×hp。你将发现,随着车重增加(2.2、 3.2、 4.2)
,hp每增加一个单位引起的mpg预期改变却在减少(0.06、 0.03、 0.003) 。
通过effects包中的effect()函数,你可以用图形展示交互项的结果。格式为:
term即模型要画的项, mod为通过lm()拟合的模型, xlevels是一个列表,指定变量要设定的常量值, multiline=TRUE选项表示添加相应直线。对于上例,即:
结果展示在图8-5中。
从图中可以很清晰地看出,随着车重的增加,马力与每加仑汽油行驶英里数的关系减弱了。当wt = 4.2时,直线几乎是水平的,表明随着hp的增加, mpg不会发生改变。然而,拟合模型只不过是分析的第一步,一旦拟合了回归模型,在信心十足地进行推断之前,必须对方法中暗含的统计假设进行检验。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21