
许多很有趣的研究都会涉及交互项的预测变量。以mtcars数据框中的汽车数据为例,若你对汽车重量和马力感兴趣,可以把它们作为预测变量,并包含交互项来拟合回归模型,参见代码清单8-5。
你可以看到Pr(>|t|)栏中,马力与车重的交互项是显著的,这意味着什么呢?若两个预测变量的交互项显著,说明响应变量与其中一个预测变量的关系依赖于另外一个预测变量的水平。
因此此例说明,每加仑汽油行驶英里数与汽车马力的关系依车重不同而不同。
预测mpg的模型为 mpg=
49.81-0.12×hp-8.22×wt +
0.03×hp×wt。为更好地理解交互项,你可以赋给wt不同的值,并简化等式。例如,可以试试wt的均值(3.2)
,少于均值一个标准差和多于均值一个标准差的值(分别是2.2和4.2) 。若wt = 2.2,则等式可以化简为 mpg=
49.81-0.12×hp-8.22×(2.2) + 0.03×hp×(2.2) = 31.41-0.06×hp;若wt =
3.2,则变成了 mpg= 23.37-0.03×hp;若wt = 4.2,则等式为 mpg=
15.33-0.003×hp。你将发现,随着车重增加(2.2、 3.2、 4.2)
,hp每增加一个单位引起的mpg预期改变却在减少(0.06、 0.03、 0.003) 。
通过effects包中的effect()函数,你可以用图形展示交互项的结果。格式为:
term即模型要画的项, mod为通过lm()拟合的模型, xlevels是一个列表,指定变量要设定的常量值, multiline=TRUE选项表示添加相应直线。对于上例,即:
结果展示在图8-5中。
从图中可以很清晰地看出,随着车重的增加,马力与每加仑汽油行驶英里数的关系减弱了。当wt = 4.2时,直线几乎是水平的,表明随着hp的增加, mpg不会发生改变。然而,拟合模型只不过是分析的第一步,一旦拟合了回归模型,在信心十足地进行推断之前,必须对方法中暗含的统计假设进行检验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08