京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【R语言】单一样本推断问题
非参数统计概念:
在实际问题中,对数据的分布形式和统计模型难以作出比较明确的假定,最多只能对总体的分布做出类似于连续性型分布或者对某点对称等一般性假定。这种不假设总体分布的具体形式,尽量从数据(样本)本身获得所需要的信息,通过估计而获得分布的结构,并逐步建立对事物的数学描述和统计建模的方法称为非参数方法。
单一样本的推断问题:
符号检验
符号检验所关心的就是通过符号“+”“-”的个数来进行统计推断
eg:假设某城市16座欲出售的楼盘均价(单位:百元 /平方米)
36 32 31 25 28 36 40 32 41 26 35 35 32 87 33 35
问:该地盘楼盘价格是否与媒体公布的3700元/平方米说法相符?
分析:
总体均值的点估计是样本均值,总体中位数的点估计是样本中位数,由于中位数的稳健性,将37理解为总体的中位数,则假设问题为:
H0:M=37 H1: M不等于37(待检验的中位数值)
假设:
S+:位于37右边的个数 S-: 位于37左边的个数
令K=min{S+,S-},且K服从p=0.5的二项分布
R代码:
##1.S-为检验统计量
sign1.test = function(x,pi,q0){
s1 = sum(x<q0) #S-的个数
s2 = sum(x>q0) #S+的个数
n = s1+s2
p1 = pbinom(s1,n,pi) ### 取检验统计量K=S-,计算 P(K<=s1)
p2 = 1-pbinom(s1-1,n,pi) ### 计算 P(K>=s1)
if(p1 < p2){ m1 = "one tail test:H1: Q > q0"
}else{
m1 = "one tail test:H1: Q < q0"
}
p.value = min(p1,p2)
m2 = "two tails test"
p.value2 = 2*p.value
list(sign.test.type = m1,p.values.of.one.test = p.value,p.value.of.two.tail.test = p.value2)
}
##以上便构建了符号检验的函数,接下来可以直接调用
data=c(36,31,25,28,36,40,32,41,26,35,35,32,87,33,35,32)##赋值
x=median(data)##获取样本中位数
sign1.test(data,0.5,37)
结果解读:
p=0.02127<0.05(显著性水平),拒绝H0,认为该地盘楼盘价格是否与媒体公布的3700元/平方米存在显著差异。
趋势检验
对于趋势分析,我们用一些数对来反映前后数据的变化。为保证数对同分布,前后两个数的间隔应该固定;为保证数对不受局部干扰,前后两个数的间隔应该较大。Cox-Staut趋势检验,是以数列中位于中间位置的数为拆分点,前后两两组成数对。
例:一个住宅小区的夜间噪音长期一直保持在30分贝。后来附近有建筑工地施工。数据是连续12天夜间在该小区所测得的噪声水平(分贝)。
30,31,33,35,31,30,68,60,65,67,66,64
请问:该建筑工地是否提高了小区的噪声水平?
建立假设:
Ho:该建筑工地没有提高小区的噪声水平
H1:该建筑工地提高了小区的噪声水平
检验统计量选取:
S=min{S+,S-}
S+:每一数对前后两值之差为正的个数
S-:每一数对前后两值之差为负的个数
R代码:
CS.test = function(x){
m = length(x)
c = if(m/2-round(m/2)==0){m/2}else{(m+1)/2} ### 此处亦可用floor(m/2)代替round(m/2)
d = if(m/2-round(m/2)==0){x[1:c]-x[(c+1):m]}else{x[1:(c-1)]-x[(c+1):m]}
n1 = length(d[which(d > 0)]) ### n1 = length(which(d > 0))
n2 = length(d[which(d < 0)])
n = n1+n2
s1 = sum(sign(d)== 1)
s2 = sum(sign(d)== -1)
if(n1 > n2){
m1 = "one tail test:H1: decreasing"
p.value = pbinom(n2,n,0.5)
}else{
m1 = "one tail test:H1: increasing"
p.value = pbinom(n1,n,0.5)
}
m2 = "two tails test"
s = min(s1,s2)
p.value2 = 2*pbinom(s,n,0.5)
if(n1==n2){p.value = 0.5;p.value2 = 1}
list(sign.test.type = m1,p.values.of.one.test = p.value,p.value.of.two.tail.test = p.value2)
}
上述就是Cox-Staut检验的算法代码
代入数据:
x=c(30,31,33,35,31,30,68,60,65,67,66,64)
结果分析:
单边检验P=0.015625<0.05(显著性水平)
故拒绝H0,认为该建筑工地提高了小区的噪声水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06