企业必须考虑的关于大数据架构的6大问题
大数据在业务价值方面承诺了很多,但企业可能难以确定如何部署需要利用的架构和工具。从描述性统计,到预测建模,到人工智能的一切都是由大数据提供支持。而组织希望通过大数据来实现这一目标,并将决定其需要推出的工具。
在5月8日召开的2017年戴尔EMC世界会议上,戴尔EMC数据分析的主要系统工程师Cory Minton发表了演示文稿,解释了组织在部署大数据时必须做出的最大决定。在做出决定开始之前,每个企业都要问这六个问题:
1.购买与构建?
要问的第一个问题是组织是否要购买大型数据系统或从头开始构建。Teradata,SAS,SAP和Splunk的热门产品可以买到并简单实现,而Hortonworks,Cloudera,Databricks,Apache Flink可用于构建大型数据系统。
Minton表示,购买提供更短的时间,以及商品使用的简单性和良好的价值。然而,这种简单性通常会带来更高的成本,而这些工具通常在低多样性数据方面效果最佳。如果组织与供应商存在现有的关系,则可以更容易地分析新产品并尝试使用大型数据工具。
许多用于构建大数据系统的流行工具价格低廉或可以免费使用,并且它们可以更容易地利用独特的价值流。其建设路径为大规模和多样化提供了机会,但这些工具可能非常复杂。互操作性往往是管理员面临的最大问题之一。
2.批量与流数据?
Minton说,由Oracle,Hadoop MapReduce和Apache Spark等产品提供的批量数据是描述性的,可以处理大量的数据。他们也可以安排,并经常被用来建立一个数据科学家进行实验的产品平台。
像Apache Kafka,Splunk和Flink这样的产品可以提供能够捕获的流数据功能,以创建潜在的预测模型。Minton表示,使用流式传输数据,其速度胜过数据保真度,但也提供了巨大的规模和多样性。这对于认同DevOps文化的组织更为有用。
3.Kappa vs. lambda架构?
Twitter是lambda架构的一个例子。其数据被分为两个路径,其中一个路径被馈送到速度层进行快速分析,而另一个路径导致批处理和服务层。Minton表示,这种模式使组织能够访问批量和流媒体的见解,并平衡有损流。他说,这里的挑战是人们必须管理两个代码和应用程序基础。
Kappa架构将所有内容都视为流,但它是一个旨在实时保持数据保真度和流程的实时处理。所有数据都将写入不可变日志,以检查更改。其硬件高效,代码较少,这是Minton推荐给开始实施大数据的组织的一种模式。
4.公共云vs私有云?
大数据的公共和私有云需要许多相同的考虑。对于初学者来说,一个组织必须考虑到最适合他们的人才工作的环境。另外,还应该考虑数据来源,安全性和合规性需求,以及弹性消费模型。
5.虚拟化与物理性?
几年前,虚拟化基础设备与物理基础设施的争论更加激烈,Minton说。然而,虚拟化已经发展到可与物理硬件进行竞争,在大数据部署方面也变得类似。它归结为组织的管理员更舒适,适用于其现有的基础设施。
6.DAS vs. NAS?
Minton说,直接连接存储(DAS)以前是部署Hadoop集群的唯一方式。然而,现在IP网络增加了带宽,网络连接存储(NAS)选项对于大数据更为可行。
使用DAS很容易上手,而且该模型与软件定义的概念一致。它是为了处理性能和存储方面的线性增长而开发的,并且它与流式传输数据相当。
网络连接存储(NAS)可以很好地处理多协议需求,提供大规模的效率,并且还可以满足安全性和合规性需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25