【SAS宏】使用WOE和IV实现风险因素筛选
在信用风险评估领域,信用评分卡模型在国内外都是一种非常成熟的预测模型,无论是使用传统的Logistic回归建模乃至一些使用Neural networks算法建模,变量筛选都是整个建模过程中至关重要的一步。建模工作人员通过变量筛选的结果能够迅速识别那些最具预测能力的风险因素。
Core concepts
首先介绍一下WOE(Weight Of Evidence)
一般情况下我们将违约客户标记为1,正常客户标记为0。那么WOE其实就是自变量取某个值时对违约比例的一重影响。其计算公式如下:
通过WOE的计算公式可以发现其反映的是在自变量每个分组下坏客户对好客户的比例与总体坏客户对好客户占比之间的差异,所以我们可以直观的认为WOE蕴含了自变量取值对于应变量(0,1)的影响。同时,WOE的计算形式与Logistic regression中的Logit变换非常相似,故可直接使用自变量的WOE值代替原自变量。
想必有的读者已经发现WOE无法对连续变量进行转换,事实上对于连续变量(或者分类繁杂的离散变量),通常使用区间切分的方式将其转换成离散形式,进而通过聚类的方法完成区间的切分,并进行最终的WOE计算。
然后介绍一下IV值(Information Value)
IV值衡量的是某变量所含的信息量,其计算公式如下:
通过公式可以看到IV值其实是WOE值的一个加权求和,其值的大小决定了该自变量对于目标变量的影响程度(不难发现IV值公式和信息熵的公式非常相似)。
Advantages
相比其他变量筛选方法,WOE和IV值有两大优势:
它可以对所有分类变量,顺序变量以及连续变量统一进行预测能力的计量。
可以对缺失值进行处理,将其看作一类即可分析信息缺失对于风险是否有影响
Macro
%macroIV(dataset,varnum);
proc sql;
select sum(case when target=1then1else0end), sum(case when target=0then1else0end), count(*) into :tot_bad, :tot_good, :tot_both
from &dataset.;
quit;
/*循环计算每个变量的WOE和IV*/
%doi=1%to&varnum.;
/*计算WOE*/
proc sql;
create table woe&i as
(select"x&i"as variable,
x&i as tier,
count(*) as cnt,
count(*)/&tot_both as cnt_pct,
sum(case when target=0then1else0end) as sum_good,
sum(case when target=0then1else0end)/&tot_good as dist_good,
sum(case when target=1then1else0end) as sum_bad,
sum(case when target=1then1else0end)/&tot_bad as dist_bad,
log((sum(case when target=0then1else0end)/&tot_good)/(sum(case when
target=1then1else0end)/&tot_bad))*100as woe,
((sum(case when target=0then1else0end)/&tot_good)-(sum(case when
target=1then1else0end)/&tot_bad))
*log((sum(case when target=0then1else0
end)/&tot_good)/(sum(case when target=1then1else0end)/&tot_bad)) as pre_iv,
sum(case when target=1then1else0end)/count(*) as outcome
from &dataset.
group by x&i
)
order by x&i;
quit;
/*计算IV*/
proc sql;
create table iv&i as select"x&i"as variable,
sum(pre_iv) as iv
from woe&i;
quit;
%end;
/*合并IV结果*/
data iv;
length variable$5.;
set iv1-iv&varnum.;
run;
/*根据IV值排序*/
proc sort data=iv;
by decending iv;
quit;
%mend;
Results
为了方便,这里就例举只有10个风险因素的例子,通过结果可以得到IV值由高到低的一个排序以及相应变量的数据缺失情况。
那我们应该如何评价以上10个变量呢?
下表则是公认的评价IV值的关系表(By Siddiqi)。
事实上,IV值小于0.02的变量将被程序自动剔除,因为这些变量被认为是没有预测能力的。另外,值得一提的是IV值大于0.5是可疑的,需要综合分析该变量后谨慎选择。
Final selection
最终选择进入模型的变量不仅需要较高的IV值,还需要考虑数据缺失率,变量分布,模型解释能力等。
Conclusion
根据实践验证,经过WOE变化之后的建模效果及模型的稳定性会比不进行变化的模型有一定的提升,事实上使用WOE来对自变量做编码的一大目的就是使得辨识度最大化。另外,WOE变化之后,自变量具备了标准化的性质,从而自变量各取值之间可以直接通过WOE进行比较,同时,不同自变量之间的各种取值也可以直接通过WOE进行比较。
通过WOE和IV值的计算,我们可以更直观地理解各自变量对目标变量的作用效果和方向,同时提升最终的预测效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10