
【SAS宏】使用WOE和IV实现风险因素筛选
在信用风险评估领域,信用评分卡模型在国内外都是一种非常成熟的预测模型,无论是使用传统的Logistic回归建模乃至一些使用Neural networks算法建模,变量筛选都是整个建模过程中至关重要的一步。建模工作人员通过变量筛选的结果能够迅速识别那些最具预测能力的风险因素。
Core concepts
首先介绍一下WOE(Weight Of Evidence)
一般情况下我们将违约客户标记为1,正常客户标记为0。那么WOE其实就是自变量取某个值时对违约比例的一重影响。其计算公式如下:
通过WOE的计算公式可以发现其反映的是在自变量每个分组下坏客户对好客户的比例与总体坏客户对好客户占比之间的差异,所以我们可以直观的认为WOE蕴含了自变量取值对于应变量(0,1)的影响。同时,WOE的计算形式与Logistic regression中的Logit变换非常相似,故可直接使用自变量的WOE值代替原自变量。
想必有的读者已经发现WOE无法对连续变量进行转换,事实上对于连续变量(或者分类繁杂的离散变量),通常使用区间切分的方式将其转换成离散形式,进而通过聚类的方法完成区间的切分,并进行最终的WOE计算。
然后介绍一下IV值(Information Value)
IV值衡量的是某变量所含的信息量,其计算公式如下:
通过公式可以看到IV值其实是WOE值的一个加权求和,其值的大小决定了该自变量对于目标变量的影响程度(不难发现IV值公式和信息熵的公式非常相似)。
Advantages
相比其他变量筛选方法,WOE和IV值有两大优势:
它可以对所有分类变量,顺序变量以及连续变量统一进行预测能力的计量。
可以对缺失值进行处理,将其看作一类即可分析信息缺失对于风险是否有影响
Macro
%macroIV(dataset,varnum);
proc sql;
select sum(case when target=1then1else0end), sum(case when target=0then1else0end), count(*) into :tot_bad, :tot_good, :tot_both
from &dataset.;
quit;
/*循环计算每个变量的WOE和IV*/
%doi=1%to&varnum.;
/*计算WOE*/
proc sql;
create table woe&i as
(select"x&i"as variable,
x&i as tier,
count(*) as cnt,
count(*)/&tot_both as cnt_pct,
sum(case when target=0then1else0end) as sum_good,
sum(case when target=0then1else0end)/&tot_good as dist_good,
sum(case when target=1then1else0end) as sum_bad,
sum(case when target=1then1else0end)/&tot_bad as dist_bad,
log((sum(case when target=0then1else0end)/&tot_good)/(sum(case when
target=1then1else0end)/&tot_bad))*100as woe,
((sum(case when target=0then1else0end)/&tot_good)-(sum(case when
target=1then1else0end)/&tot_bad))
*log((sum(case when target=0then1else0
end)/&tot_good)/(sum(case when target=1then1else0end)/&tot_bad)) as pre_iv,
sum(case when target=1then1else0end)/count(*) as outcome
from &dataset.
group by x&i
)
order by x&i;
quit;
/*计算IV*/
proc sql;
create table iv&i as select"x&i"as variable,
sum(pre_iv) as iv
from woe&i;
quit;
%end;
/*合并IV结果*/
data iv;
length variable$5.;
set iv1-iv&varnum.;
run;
/*根据IV值排序*/
proc sort data=iv;
by decending iv;
quit;
%mend;
Results
为了方便,这里就例举只有10个风险因素的例子,通过结果可以得到IV值由高到低的一个排序以及相应变量的数据缺失情况。
那我们应该如何评价以上10个变量呢?
下表则是公认的评价IV值的关系表(By Siddiqi)。
事实上,IV值小于0.02的变量将被程序自动剔除,因为这些变量被认为是没有预测能力的。另外,值得一提的是IV值大于0.5是可疑的,需要综合分析该变量后谨慎选择。
Final selection
最终选择进入模型的变量不仅需要较高的IV值,还需要考虑数据缺失率,变量分布,模型解释能力等。
Conclusion
根据实践验证,经过WOE变化之后的建模效果及模型的稳定性会比不进行变化的模型有一定的提升,事实上使用WOE来对自变量做编码的一大目的就是使得辨识度最大化。另外,WOE变化之后,自变量具备了标准化的性质,从而自变量各取值之间可以直接通过WOE进行比较,同时,不同自变量之间的各种取值也可以直接通过WOE进行比较。
通过WOE和IV值的计算,我们可以更直观地理解各自变量对目标变量的作用效果和方向,同时提升最终的预测效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08