R内存管理与垃圾清理
1.内存查看
memory.limit():查看内存大小
memory.limit(n):申请内存大小
memory.size(NA):查看内存大小
memory.size(T):查看已分配的内存
memory.size(F):查看已使用的内存
2.内存申请
在Windows开始菜单运行:
Rgui -max-mem-size 8GB
与在R GUI中执行:
memory.limit(8000)
都能申请8GB使用内存
3.垃圾清除
rm(x):从workplace中删除变量/文件x
gc():清除内存垃圾
rm(list=ls()):清除workplace中所有变量
4.提升R的性能和突破内存限制的技巧
4.1性能提升的方法
4.1.1 系统升级
升级硬件
使用64位操作系统
利用GPU
租用云计算服务器
4.1.2 开发层面的优化
算法降低算法复杂度
调用C/C++或者Fortran关键的、耗时的计算步骤
缓冲技术减少重复计算
4.1.3 使用层面的优化
充分利用R的内存机制——R的基础优化
增强R的矩阵运算——加速BLAS
并行计算
大规模数据的处理——图片内存限制
使用Revolution R Enterprise(RRE)
4.2 充分利用R的内部机制优化性能
4.2.1向量化
向量化的代码,不要用循环!
利用矩阵运算
利用内置的向量化函数,比如exp、sin、rowMeans、rowSums、colSums、ifelse等
利用Vectorize函数将非向量化的函数改装为向量化的函数
*apply函数族:apply、lapply、sapply、tapply、mapply等
plyr和dplyr包Rstudio发布的data wrangling cheat sheet
##利用矩阵运算
n <- 100000
x1 <- 1:n
x2 <- 1:n
y <- vector()
system.time(
for(i in 1:n){y[i] <- x1[i] + x2[i]}
)
system.time(y <- x1 + x2)
## 利用向量化运算
## 内置的向量化函数
v <- 1:100000
result <- rep(1:100000)
system.time(
for(i in 1:100000){result[i] <- sin(v[i])}
)
system.time(result <- sin(v))
## 利用rowMeans、rowSums、colSums、colMeans等函数对矩阵或数据库做整体处理
colSums(iris[,1:4])
利用R内置的向量化函数,自定义向量化函数,只要在函数定义时每个运算是向量化的。但是在函数定义时用了逻辑判断语句,就会破坏的向量化特征。
func <- function(x){
if(x %% 2 == 0){
ret <- TRUE
}else{
ret <- FALSE}
return(ret)
}
func(34)
func(c(1,2,3,4))
## Warning message:
## In if (x%%2 == 0) { :
## the condition has length > 1 and only the first element will be used
## 在函数的定义中有if语句,不能接受向量作为判断的条件,否则判断第一个元素。
## 利用ifelse函数做向量化的判断
myfunc <- function(x){
ifelse(x %% 2 == 0,TRUE,FALSE)
}
myfunc(c(1,2,3,4))
##利用Vectorize函数将非向量化的函数改装为向量化的函数
funcv <- Vectorize(func)
funcv(c(1,2,3,4))
##利用sapply函数向量化运算
sapply(c(1,2,3,4),func)
4.2.2预先给对象分配内存
R为解释性语言,也是动态语言,如果不事先指定对象的类型和长度,在运算过程会动态分配内存,提高灵活性,但降低了效率。
尽量减少cbind、rbind的使用
## 求出10000个斐波那契数
x <- c(1,1)
i <- 2
system.time(
while(i<10000){
new <- x[i] + x[i-1]
x <- cbind(x,new)
i <- i + 1
}
)
## 指定类型和长度
x <- vector(mode="numeric",100000)
x[1] <- 1
x[2] <- 1
system.time(
while(i<10000){
i <- i + 1
x[i] <- x[i-1] + x[i-2]
}
)
4.2.3避免内存拷贝
假设我们有许多彼此不相关的向量,但因为一些其他的原因,我们希望将每个向量的第三个元素设为8,既然它们是互不相关的,甚至可能具有不同的长度,我们也许会考虑将它们放在一个列表中:
m <- 5000
n <- 1000
z <- list()
for(i in 1:m) z[[i]] <- sample(1:10, n, replace = T)
system.time(for(i in 1:m) z[[i]][3] <- 8)
## 把这些向量一起放到矩阵中
z <- matrix(sample(1:10, m * n, replace = T),nrow = m)
system.time(z[,3] <- 8)
4.2.4删除临时对象和不再用的对象
rm()删除对象
rm(object)删除指定对象,rm(list = ls())可以删除内存中的所有对象
gc()内存垃圾回收
使用rm(object)删除变量,要使用gc()做垃圾回收,否则内存是不会自动释放的。invisible(gc())不显示垃圾回收的结果
4.2.5分析内存的函数
ls()列出特定环境中的对象
object.size()返回R对象的大小(近似的)
memory.profile()分析cons单元的使用情况
memory.size()监测全部内存的使用情况(仅Windows下可用)
memory.size(max=T)返回历史占用过的最大内存;memory.size(max=F)返回目前占用的内存。未做垃圾清理时,已使用内存和已分配内存同步增加,但在垃圾清理后rm(list=ls());gc(),已使用内存会减少,而已分配给R的内存不会改变。
memory.limit()系统可分配的内存上限(仅Windows下可用)
memory.limit(newLimit)更改到一个新的上限。 注意,在32位的R中,封顶上限为4G,你无法在一个程序上使用超过4G (数位上限)。这种时候,可以考虑使用64位的版本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28