
数据是关系数据库系统中存储的统一化格式。 因此,实施我们需要非常先进和复杂的SQL查询统计计算。但是R能够轻松地连接到诸如MySql, Oracle, Sql server等多种关系数据库并且可以从它们的记录转为R中的数据帧。一旦数据是在R环境中可用,就变成了正常R数据集,并可以被操纵或使用所有强大包和函数来进行分析。
在本教程中,我们将使用 MySQL 作为参考数据库,用于连接到 R 中。
RMySQL 软件包
R有一个名为“RMySQL”它提供了与 MySQL 数据库之间的本地连接的内置软件包。可以使用下面的命令来安装这个包到 R 的环境。
install.packages("RMySQL")
连接R到MySql
一旦软件包安装,我们创建 R 的连接对象连接到数据库。这需要用户名,密码,数据库名和主机名作为输入。
# Create a connection Object to MySQL database.
# We will connect to the sampel database named "sakila" that comes with MySql installation.
mysqlconnection = dbConnect(MySQL(), user='root', password='', dbname='sakila', host='localhost')
# List the tables available in this database.
dbListTables(mysqlconnection)
当我们上面的代码执行时,它产生以下结果:
[1] "actor" "actor_info"
[3] "address" "category"
[5] "city" "country"
[7] "customer" "customer_list"
[9] "film" "film_actor"
[11] "film_category" "film_list"
[13] "film_text" "inventory"
[15] "language" "nicer_but_slower_film_list"
[17] "payment" "rental"
[19] "sales_by_film_category" "sales_by_store"
[21] "staff" "staff_list"
[23] "store"
查询表
我们可以使用函数 dbSendQuery()查询在MySQL数据库表。查询获取执行在MySQL中并使用fetch()函数返回结果集。最后,它被存储为R的数据帧。
# Query the "actor" tables to get all the rows.
result = dbSendQuery(mysqlconnection, "select * from actor")
# Store the result in a R data frame object. n=5 is used to fetch first 5 rows.
data.frame = fetch(result, n=5)
print(data.fame)
当我们上面的代码执行时,它产生以下结果:
actor_id first_name last_name last_update
1 1 PENELOPE GUINESS 2006-02-15 04:34:33
2 2 NICK WAHLBERG 2006-02-15 04:34:33
3 3 ED CHASE 2006-02-15 04:34:33
4 4 JENNIFER DAVIS 2006-02-15 04:34:33
5 5 JOHNNY LOLLOBRIGIDA 2006-02-15 04:34:33
查询与筛选子句
我们可以通过任何有效的 select 查询得到结果。
result = dbSendQuery(mysqlconnection, "select * from actor where last_name='TORN'")
# Fetch all the records(with n = -1) and store it as a data frame.
data.frame = fetch(result, n=-1)
print(data)
当我们上面的代码执行时,它产生以下结果:
actor_id first_name last_name last_update
1 18 DAN TORN 2006-02-15 04:34:33
2 94 KENNETH TORN 2006-02-15 04:34:33
3 102 WALTER TORN 2006-02-15 04:34:33
更新表的行
我们可以通过传递更新查询到dbSendQuery()函数更新一个MySQL表中的行。
dbSendQuery(mysqlconnection, "update mtcars set disp = 168.5 where hp = 110")
在执行上面的代码后,我们可以看到该表在MySQL环境中已经更新。
将数据插入到表
dbSendQuery(mysqlconnection,
"insert into mtcars(row_names, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb)
values('New Mazda RX4 Wag', 21, 6, 168.5, 110, 3.9, 2.875, 17.02, 0, 1, 4, 4)"
)
执行上面的代码后,我们可以看到插入到表在MySQL环境的记录行。
在MySQL中创建表
我们可以使用函数dbWriteTable()创建一个表在MySQL中。它覆盖表,如果它已经存在,并且需要一个数据帧输入。
# Create the connection object to the database where we want to create the table.
mysqlconnection = dbConnect(MySQL(), user='root', password='', dbname='sakila', host='localhost')
# Use the R data frame "mtcars" to create the table in MySql.
# All the rows of mtcars are taken inot MySql.
dbWriteTable(mysqlconnection, "mtcars", mtcars[, ], overwrite = TRUE)
在执行上面的代码后,我们可以看到在MySQL环境中有创建后的表。
在MySQL删除表。
我们可以把 MySql 数据库这个表删除,通过 DROP TABLE 语句发送到 dbSendQuery(),与之前从表查询数据的方式相同。
dbSendQuery(mysqlconnection, 'drop table if exists mtcars')
在执行上面的代码后,我们可以看到该表在MySQL环境被丢弃。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28