
散点图显示绘制坐标平面多点。每个点代表两个变量的值。一个变量被选择在水平轴和另一个在垂直轴。
使用 plot()函数来创建简单的散点图。
语法
plot(x, y, main, xlab, ylab, xlim, ylim, axes)
以下是所使用的参数的说明:
x 是数据集,其值在水平坐标
y 是数据集,其值在垂直坐标
main 是图形的标题
xlab 是水平轴上的标签
ylab 是垂直轴上的标签
xlim 是用于限制绘制x的值
ylim 是用于限制绘制y的值
axes 指示是否两个轴应在图上绘制
示例
我们使用的数据集“mtcars”可在R环境中创建一个基本散点图。让我们使用 mtcars 中的 "wt" 和 "mpg" 的列。
input <- mtcars[,c('wt','mpg')]
print(head(input))
当我们上面的代码执行时,它产生以下结果:
wt mpg
Mazda RX4 2.620 21.0
Mazda RX4 Wag 2.875 21.0
Datsun 710 2.320 22.8
Hornet 4 Drive 3.215 21.4
Hornet Sportabout 3.440 18.7
Valiant 3.460 18.1
创建散点图
下面的脚本将创建wt(重量比)和 mpg(英里每加仑)之间的关系的散点图图表。
# Get the input values.
input <- mtcars[,c('wt','mpg')]
# Give the chart file a name.
png(file = "scatterplot.png")
# Plot the chart for cars with weight between 2.5 to 5 and mileage between 15 and 30.
plot(x=input$wt,y=input$mpg,
xlab="Weight",
ylab="Milage",
xlim=c(2.5,5),
ylim=c(15,30),
main="Weight vs Milage"
)
# Save the file.
dev.off()
当我们上面的代码执行时,它产生以下结果:
散点图矩阵
当我们有两个以上的变量,我们希望用散点图矩阵找到对其余的变量之间的相关性。我们使用 pairs() 函数创建散点图矩阵。
语法
pairs(formula, data)
以下是所使用的参数的说明:
formula 表示一系列的配对使用的变量。
data 表示所述数据集从该变量将被采用。
示例
每个变量配对与每个其余的变量。散点图绘制配对。
# Give the chart file a name.
png(file = "scatterplot_matrices.png")
# Plot the matrices between 4 variables giving 12 plots.
# One variable with 3 others and total 4 variables.
pairs(~wt+mpg+disp+cyl,data=mtcars,
main="Scatterplot Matrix")
# Save the file.
dev.off()
当执行上面的代码中,我们得到以下输出:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30