京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言做数据分析(8)_数据的输入与输出之READ函数_数据分析师
read.table() 函数
1、用于读入表格(表)类型的数据,同时生成数据框对象。
2、读入的数据要求有规则的分隔符,默认有:空格、TAB、换行符、回车符;其它的分隔符,通过sep=来进行指定。
read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
fileEncoding = "", encoding = "unknown")
例如:
demo_3<-read.table('e:/demo_3.txt',header=T)

read.fwf()函数
1、适用用于读入数据相应没有相应的分隔符,但是读入的数据字段长度是固定长度。
2、数据导入R后,生成列表对象。
读入固定分隔长度的数据;
read.fwf(file, widths, header = FALSE, sep = "\t",
skip = 0, row.names, col.names, n = -1,
buffersize = 2000)
例如:在这个数据中,前面的3个字符与接下来的3个数字表示名称、得分,因为二个字段之间没有分隔符号,但其长度是固定的,所以适合用本函数。
ABC123%$12
TEX124@#12
y o14 @@#
read.fwf('e:/demo_1.txt',widths=c(3,3),col.names=c('name','score'));

w <- readline()函数
1、用于程序的交互,根据输入的条件来判断下一步执行的方向;
2、通过键盘读入一行数据;
例如:根据输入的来判断后续程序的执行流程
Demo_2<-function()
{
input<-readline("DO you think R is hard to learn,Please give your choice:Y or N ")
if(input=="Y")
cat("Come on; Spent more time.\n")
else
cat("Good!")
}
Demo_2()

Readlines() 函数
1、控制读入的数据行数,非批处理,有点类似于数据库中的指标操作,可对文件中的数据逐行操作。2、这个对于读入日志类的数据很有用。例如:通过对读入数据的每行来判断是否有需要的数据,有再对数据进行处理;tips:该数据配合R中的正则表达式相关函数,对于处理不规则的数据很强大。
例如:
1、 与文件demo_1建立连接
con<- file("demo_3","r")
2、指定每次执行只读入一行;
RC<-readLines(con,n=1)
3、关闭联接
close(con)

说明:
1、如果读到文件的最后,则length(RC)=0;EOF文件最后返回的空值。
2、N控制每次读入几行;
3、当读到最后要重新开始的时间:seek(con=c,where=0),返回当前指标所有的位置
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28