京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS信用评分之番外篇异常值的识别
今天想分享给大家的是我早期建模的时候一个识别异常值的办法,也许你在“信用风险评分卡研究”看过,但是代码只能识别一个变量,我将这个代码作了改良,但是我在这里必须声明一点,就是假设你身处的公司数据并不多的话,我不建议你使用这个代码,因为我是简单粗暴的将异常值直接剔除了。
就因为我的数据不多,所以我之前在做建模的时候使用的是先等量分组再最优分段的方式来使变量不用识别异常值,说道这里,我又需要跟大家提醒一下就是关于最优分段的代码,说有过拟合的现象。这里跟大家解释一下就是关于最优分段过拟合,因为最优分段的基础是建立在等量分组的基础上,所以重点就是在等量分组上,假设你领导能接受的最小一组的总数据量的1/20,那么你就在等量分组中分20组,保证在后面的产出至少一组都是1/20以上,以此类推。
进入正题,我来讲这个识别异常值的代码,首先,这个代码只针对连续变量,而且是正态分布或者是接近正态分布的变量,若是双峰或者左偏单峰,或者右偏单峰都不适用这个代码的识别。其实这个代码有很多局限性,所以我写出来之后也不是经常的用到,所以叫做番外篇。
接下来的这个代码分为两部分,第一就是针对缺失值大于30%的变量在业务上可以解释的通的,那这个变量做异常值处理的时候就会去除缺失值做异常值处理。对于缺失值小于30%,就让其变量的缺失值跟其他值一起做异常值处理。第二就是针对判定为异常值观测不会就直接删掉,而是先输出该观测,等到全部的变量做完了异常值检查之后,再判断这个观测出现了几次的异常。这时候你定一个伐值,假设是5次就删掉,那就是只要一个观测在这批变量中出现过5次判断为异常的那就会删掉。基本思路就是这样子啦。那就上代码吧。
/*使用标准差挑出异常数,每个变量单独挑出在三倍标准差的异常值,这里是在5各变量中都显示异常的观测则剔除*/
*%Extremes(DSin, VarX, IDVar, NSigmas, DSout);
*DSin 填入原数据集;
*VarX 要检查异常的变量;
*IDVar 数据集的主键,用于标识是那条观测;
*NSigmas 在几倍标准差内属于异常值,在后续的执行代码中,我写的是3;
*DSout输出的数据集;
%macro Extremes(DSin, VarX, IDVar, NSigmas, DSout);
proc sort data=&DSin. out=temp(keep= &VarX. &IDVar.);by &IDVar;
run;
proc univariate data=temp noprint;
var &VarX;
output out=temp_u STD=VSTD Mean=VMean;
run;
data _null_;
set temp_u;
call symput('STD', VSTD);
call symput('Mean', VMean);
run;
%let ULimit=%sysevalf(&Mean + &NSigmas * &STD);
%let LLimit=%sysevalf(&Mean - &NSigmas * &STD);
data &DSout;
set temp;
if &VarX < &Llimit or &VarX > &ULimit;
run;
proc datasets library=work nodetails nolist ;
delete temp temp_u;
quit;
%mend;
%macro Extremes1(DSin, VarX, IDVar, NSigmas, DSout);
proc sort data=&DSin. out=temp(keep= &VarX. &IDVar.);by &IDVar;
run;
proc univariate data=temp noprint;
var &VarX;
output out=temp_u STD=VSTD Mean=VMean;
run;
data _null_;
set temp_u;
call symput('STD', VSTD);
call symput('Mean', VMean);
run;
%let ULimit=%sysevalf(&Mean + &NSigmas * &STD);
%let LLimit=%sysevalf(&Mean - &NSigmas * &STD);
data &DSout;
set temp(where=(&VarX.^=.));
if &VarX < &Llimit or &VarX > &ULimit;
run;
proc datasets library=work nodetails nolist ;
delete temp temp_u;
quit;
%mend;
/*这个宏是产生一个变量列表。这的宏在这里的过程是,因为字符变量前期我已经定义完全,没有异常值,所以只检查在
原数据集中的数值变量是否有异常值*/
*var_namelist(data=,coltype=,tarvar=);
*data 填入原始数据集;
*coltype 变量的类型,数值是“num”,字符是“char”;
*tarvar 填入你不要做异常值检验的变量,这里只能填一个,理论上填的是主键;
*dsor 输出的数据集;
%macro var_namelist(data=,coltype=,tarvar=,dsor=);
%let lib=%upcase(%scan(&data.,1,'.'));
%let dname=%upcase(%scan(&data.,2,'.'));
%global var_list var_num;
proc sql ;
create table &dsor. as
select name
from sashelp.VCOLUMN
where left(libname)="&lib." and left(memname)="&dname." and type="&coltype." and lowcase(name)^=lowcase("&tarvar.");
quit;
%mend;
/*这个宏是上面两个宏的总宏,之前的两个宏是服务于这个宏。这个宏就是最后输出异常值的汇总的appl_id的数据集*/
*a 填入数据集的名字即可;
%macro ivar(data,tar_var,id);
proc datasets lib=work;
delete kk;
run;
%var_namelist(data=&data.,coltype=num,tarvar="&tar_var.",dsor=score_total_list_1)
data _null_;
set score_total_list_1;
call symput (compress("var"||left(_n_)),compress(name));
call symput(compress("n"),compress(_n_));
run;
%do i= 2 %to &n.;
proc sql;
select count(case when &&Var&i=. then 1 else 0 end)/count(*) into:num&i.
from &data.;
quit;
%if &&num&i.<0.3 %then %do;
%Extremes(DSin=&data., VarX=&&Var&i., IDVar=appl_id, NSigmas=4, DSout=aa_&i.);
%end;
%else %do;
%Extremes1(DSin=&data., VarX=&&Var&i., IDVar=appl_id, NSigmas=4, DSout=aa_&i.);
%end;
proc append base=kk data=aa_&i.(keep=&id.);
run;
proc datasets lib=work;
delete aa_&i.;
run;
%end;
%mend;
ivar(data,tar_var,id);
data:输入你的数据集。
Tar_var:输入你的因变量。
Id:输入你的主键。
输出的数据集是主键,对其计数就知道他在多少个变量里面表现为异常值,再根据自己判断的伐值进行删除。
我个人觉得这个代码的对于逻辑回归模型的可用性不是太强,因为逻辑回归中对于变量并没与太多的要求,若是你建模用的模型是线性回归估计可能对你有用。那么这次的分享就到这里吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18