
SAS信用评分之番外篇异常值的识别
今天想分享给大家的是我早期建模的时候一个识别异常值的办法,也许你在“信用风险评分卡研究”看过,但是代码只能识别一个变量,我将这个代码作了改良,但是我在这里必须声明一点,就是假设你身处的公司数据并不多的话,我不建议你使用这个代码,因为我是简单粗暴的将异常值直接剔除了。
就因为我的数据不多,所以我之前在做建模的时候使用的是先等量分组再最优分段的方式来使变量不用识别异常值,说道这里,我又需要跟大家提醒一下就是关于最优分段的代码,说有过拟合的现象。这里跟大家解释一下就是关于最优分段过拟合,因为最优分段的基础是建立在等量分组的基础上,所以重点就是在等量分组上,假设你领导能接受的最小一组的总数据量的1/20,那么你就在等量分组中分20组,保证在后面的产出至少一组都是1/20以上,以此类推。
进入正题,我来讲这个识别异常值的代码,首先,这个代码只针对连续变量,而且是正态分布或者是接近正态分布的变量,若是双峰或者左偏单峰,或者右偏单峰都不适用这个代码的识别。其实这个代码有很多局限性,所以我写出来之后也不是经常的用到,所以叫做番外篇。
接下来的这个代码分为两部分,第一就是针对缺失值大于30%的变量在业务上可以解释的通的,那这个变量做异常值处理的时候就会去除缺失值做异常值处理。对于缺失值小于30%,就让其变量的缺失值跟其他值一起做异常值处理。第二就是针对判定为异常值观测不会就直接删掉,而是先输出该观测,等到全部的变量做完了异常值检查之后,再判断这个观测出现了几次的异常。这时候你定一个伐值,假设是5次就删掉,那就是只要一个观测在这批变量中出现过5次判断为异常的那就会删掉。基本思路就是这样子啦。那就上代码吧。
/*使用标准差挑出异常数,每个变量单独挑出在三倍标准差的异常值,这里是在5各变量中都显示异常的观测则剔除*/
*%Extremes(DSin, VarX, IDVar, NSigmas, DSout);
*DSin 填入原数据集;
*VarX 要检查异常的变量;
*IDVar 数据集的主键,用于标识是那条观测;
*NSigmas 在几倍标准差内属于异常值,在后续的执行代码中,我写的是3;
*DSout输出的数据集;
%macro Extremes(DSin, VarX, IDVar, NSigmas, DSout);
proc sort data=&DSin. out=temp(keep= &VarX. &IDVar.);by &IDVar;
run;
proc univariate data=temp noprint;
var &VarX;
output out=temp_u STD=VSTD Mean=VMean;
run;
data _null_;
set temp_u;
call symput('STD', VSTD);
call symput('Mean', VMean);
run;
%let ULimit=%sysevalf(&Mean + &NSigmas * &STD);
%let LLimit=%sysevalf(&Mean - &NSigmas * &STD);
data &DSout;
set temp;
if &VarX < &Llimit or &VarX > &ULimit;
run;
proc datasets library=work nodetails nolist ;
delete temp temp_u;
quit;
%mend;
%macro Extremes1(DSin, VarX, IDVar, NSigmas, DSout);
proc sort data=&DSin. out=temp(keep= &VarX. &IDVar.);by &IDVar;
run;
proc univariate data=temp noprint;
var &VarX;
output out=temp_u STD=VSTD Mean=VMean;
run;
data _null_;
set temp_u;
call symput('STD', VSTD);
call symput('Mean', VMean);
run;
%let ULimit=%sysevalf(&Mean + &NSigmas * &STD);
%let LLimit=%sysevalf(&Mean - &NSigmas * &STD);
data &DSout;
set temp(where=(&VarX.^=.));
if &VarX < &Llimit or &VarX > &ULimit;
run;
proc datasets library=work nodetails nolist ;
delete temp temp_u;
quit;
%mend;
/*这个宏是产生一个变量列表。这的宏在这里的过程是,因为字符变量前期我已经定义完全,没有异常值,所以只检查在
原数据集中的数值变量是否有异常值*/
*var_namelist(data=,coltype=,tarvar=);
*data 填入原始数据集;
*coltype 变量的类型,数值是“num”,字符是“char”;
*tarvar 填入你不要做异常值检验的变量,这里只能填一个,理论上填的是主键;
*dsor 输出的数据集;
%macro var_namelist(data=,coltype=,tarvar=,dsor=);
%let lib=%upcase(%scan(&data.,1,'.'));
%let dname=%upcase(%scan(&data.,2,'.'));
%global var_list var_num;
proc sql ;
create table &dsor. as
select name
from sashelp.VCOLUMN
where left(libname)="&lib." and left(memname)="&dname." and type="&coltype." and lowcase(name)^=lowcase("&tarvar.");
quit;
%mend;
/*这个宏是上面两个宏的总宏,之前的两个宏是服务于这个宏。这个宏就是最后输出异常值的汇总的appl_id的数据集*/
*a 填入数据集的名字即可;
%macro ivar(data,tar_var,id);
proc datasets lib=work;
delete kk;
run;
%var_namelist(data=&data.,coltype=num,tarvar="&tar_var.",dsor=score_total_list_1)
data _null_;
set score_total_list_1;
call symput (compress("var"||left(_n_)),compress(name));
call symput(compress("n"),compress(_n_));
run;
%do i= 2 %to &n.;
proc sql;
select count(case when &&Var&i=. then 1 else 0 end)/count(*) into:num&i.
from &data.;
quit;
%if &&num&i.<0.3 %then %do;
%Extremes(DSin=&data., VarX=&&Var&i., IDVar=appl_id, NSigmas=4, DSout=aa_&i.);
%end;
%else %do;
%Extremes1(DSin=&data., VarX=&&Var&i., IDVar=appl_id, NSigmas=4, DSout=aa_&i.);
%end;
proc append base=kk data=aa_&i.(keep=&id.);
run;
proc datasets lib=work;
delete aa_&i.;
run;
%end;
%mend;
ivar(data,tar_var,id);
data:输入你的数据集。
Tar_var:输入你的因变量。
Id:输入你的主键。
输出的数据集是主键,对其计数就知道他在多少个变量里面表现为异常值,再根据自己判断的伐值进行删除。
我个人觉得这个代码的对于逻辑回归模型的可用性不是太强,因为逻辑回归中对于变量并没与太多的要求,若是你建模用的模型是线性回归估计可能对你有用。那么这次的分享就到这里吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10