R爬虫之京东商城手机信息批量获取
人手一部智能手机的移动互联网时代,智能手机对很多人来说,它就像我们身上生长出来的一个器官那样重要。如果你不能对各大品牌的『卖点』和『受众』侃上一阵,很可能会被怀疑不是地球人。
今天我们来探索一下,如何从『京东商城』爬取各大品牌的手机信息。
1.预备知识
R爬虫需要掌握的技能包括:
基本的网页知识,如html,XML文件的解析
分析XPath
使用网页开发工具
异常捕捉的处理
字符串的处理
正则表达式的使用
数据库的基本操作
不过不要担心,目前只需要掌握前三项技能,即可开始练习。
前三项技能的掌握可以参考 Automated Data Collection with R 一书。正常情况下,一天之内大致即可掌握。
2.页面分析
(待完善)
3.提取各大品牌的链接
#### packages we need ####
## ----------------------------------------------------------------------- ##
require(stringr)
require(XML)
require(RCurl)
library(Rwebdriver)
setwd("JDDownload")
BaseUrl<-"http://search.jd.com"
quit_session()
start_session(root = "http://localhost:4444/wd/hub/",browser = "firefox")
# post Base Url
post.url(url = BaseUrl)
SearchField<-element_xpath_find(value = '//*[@id="keyword"]')
SearchButton<-element_xpath_find(value = '//*[@id="gwd_360buy"]/body/div[2]/form/input[3]')
#keyword for search
keywords<-'手机'
element_click(SearchField)
keys(keywords)
element_click(SearchButton)
Sys.sleep(1)
#test
get.url()
pageSource<-page_source()
parsedSourcePage<-htmlParse(pageSource, encoding = 'UTF-8')
## Download Search Results
fname <- paste0(keywords, " SearchPage 1.html")
writeLines(pageSource, fname)
#get all the brand url
Brand<-'//*[@id="J_selector"]/div[1]/div/div[2]/div[3]/ul/li/a/@href'
BrandLinks<-xpathSApply(doc = parsedSourcePage, path = Brand)
View(data.frame(BrandLinks))
BrandLinks<-sapply(BrandLinks,function(x){
paste0(BaseUrl,"/",x)
})
save(BrandLinks,file = 'BrandLinks.rda')
4.访问每个品牌的页面,抓取每个品牌下的商品链接
##############Function 1 #################################3##
### 对各品牌的手机页面进行抓取 ########3#
getBrandPage<-function(BrandUrl,foreDownload = T){
#获取某品牌搜索页面
post.url(BrandUrl)
Brand_pageSource<-page_source()
#parse
parsedSourcePage<-htmlParse(Brand_pageSource, encoding = 'UTF-8')
#get brand name
BrandNamePath<-'//*[@id="J_crumbsBar"]/div[2]/div/a/em'
BrandName<-xpathSApply(doc = parsedSourcePage, path = BrandNamePath, fun = xmlValue)
#Save the page
BrandPageName<-paste0(BrandName,'_PageSource.html')
#Create a file
if(!file.exists(BrandName)) dir.create(BrandName)
# save
writeLines(text = Brand_pageSource, con = paste0(BrandName,'/',BrandPageName))
# get the product page url
#path
Brand_AllProductPath<-'//*[@id="J_goodsList"]/ul/li/div/div[4]/a/@href'
#url
Brand_AllProductLinks<-xpathSApply(doc = parsedSourcePage, path = Brand_AllProductPath)
# #remove some false url
# FalseLink<-grep(x = Brand_AllProductLinks,pattern = 'https',fixed = TRUE)
# Brand_AllProductLinks<-Brand_AllProductLinks[-FalseLink]
# add a head
Brand_AllProductLinks<-str_c('http:',Brand_AllProductLinks)
#save and return the url
save(Brand_AllProductLinks,file = paste0(BrandName,'_AllProductLinks.rda'))
return(Brand_AllProductLinks)
}
# test
BrandUrl<-BrandLinks[1]
getBrandPage(BrandUrl)
#get all the links
Brand_ProductLink<-list()
for(i in 1:length(BrandLinks)){
Sys.sleep(10)
Brand_ProductLink[[i]]<-getBrandPage(BrandUrl = BrandLinks[i])
}
#clean the links
All_ProductLink<-lapply(Brand_ProductLink,function(x){
TrueLink<-grep(x = x,pattern = 'http://item.jd.com/',fixed = TRUE,value = FALSE)
return(x[TrueLink])
})
# save the links
save(All_ProductLink,file = 'All_ProductLink.rda')
5.访问每个商品页面,提取有用信息
我们初步提取如下指标:标题(Title),卖点(KeyCount),价格(Price),评论数(commentCount),尺寸(Size),后置摄像头像素(BackBit),后置摄像头像素(ForwardBit),核数(Core),分辨率(Resolution),品牌(Brand),上架时间(onSaleTime).
#################################################
######## Function2 :访问每个商品页面,提取有用信息 ########
Product<-function(ProductLink){
post.url(ProductLink)
Sys.sleep(4)
# get the page
Product_pageSource<-page_source()
#parse
Parsed_product_Page<-htmlParse(Product_pageSource, encoding = 'UTF-8')
# get title,,key count,price,CommentCount and so on
#PATH
TitlePath<-'//*[@id="name"]/h1'
KeyCountPath<-'//*[@id="p-ad"]'
PricePath<-'//*[@id="jd-price"]'
commentCountPath<-'//*[@id="comment-count"]/a'
SizePath<-'//*[@id="parameter1"]/li[1]/div/p[1]'
BackBitPath<-'//*[@id="parameter1"]/li[2]/div/p[1]'
ForwardBitPath<-'//*[@id="parameter1"]/li[2]/div/p[2]'
CorePath<-'//*[@id="parameter1"]/li[3]/div/p[1]'
NamePath<-'//*[@id="parameter2"]/li[1]'
CodePath<-'//*[@id="parameter2"]/li[2]'
BrandPath<-'//*[@id="parameter2"]/li[3]'
onSaleTimePath<-'//*[@id="parameter2"]/li[4]'
ResolutionPath<-'//*[@id="parameter1"]/li[1]/div/p[2]'
Title<-xpathSApply(doc = Parsed_product_Page,path = TitlePath,xmlValue)
KeyCount<-xpathSApply(doc = Parsed_product_Page,path = KeyCountPath,xmlValue)
Price<-xpathSApply(doc = Parsed_product_Page,path = PricePath,xmlValue)
commentCount<-xpathSApply(doc = Parsed_product_Page,path = commentCountPath,xmlValue)
Size<-xpathSApply(doc = Parsed_product_Page,path = SizePath,xmlValue)
BackBit<-xpathSApply(doc = Parsed_product_Page,path = BackBitPath,xmlValue)
ForwardBit<-xpathSApply(doc = Parsed_product_Page,path = ForwardBitPath,xmlValue)
Core<-xpathSApply(doc = Parsed_product_Page,path = CorePath,xmlValue)
Name<-xpathSApply(doc = Parsed_product_Page,path = NamePath,xmlValue)
Code<-xpathSApply(doc = Parsed_product_Page,path = CodePath,xmlValue)
Resolution<-xpathSApply(doc = Parsed_product_Page,path = ResolutionPath,xmlValue)
Brand<-xpathSApply(doc = Parsed_product_Page,path = BrandPath,xmlValue)
onSaleTime<-xpathSApply(doc = Parsed_product_Page,path = onSaleTimePath,xmlValue)
# 整理成data frame
mydata<-data.frame(Title = Title,KeyCount = KeyCount, Price = Price,
commentCount = commentCount, Size = Size, BackBit = BackBit,
ForwardBit = ForwardBit, Core = Core, Name = Name,Code = Code,
Resolution = Resolution,
Brand = Brand, onSaleTime = onSaleTime)
#save the page
FileName<-paste0('Product/',Brand,Code,'_pageSource.html')
writeLines(text = Product_pageSource,con = FileName)
#return the data
return(mydata)
}
# test
quit_session()
start_session(root = "http://localhost:4444/wd/hub/",browser = "firefox")
load(file = 'All_ProductLink.rda')
ProductLink1<-All_ProductLink[[40]][1]
testData<-Product(ProductLink = ProductLink1)
#定义tryCatch
mySpider<-function(ProductLink){
out<-tryCatch(
{
message('This is the try part:')
Product(ProductLink = ProductLink)
},
error=function(e){
message(e)
return(NA)
},
finally = {
message("The end!")
}
)
return(out)
}
## loop
# get all data
ProductInformation<-list()
k <-0
for(i in 1:length(All_ProductLink)){
for(j in 1:length(All_ProductLink[[i]])){
k<-k+1
ProductInformation[[k]]<-mySpider(ProductLink = All_ProductLink[[i]][j])
}
}
# save my data
MobilePhoneInformation<-do.call(rbind,ProductInformation)
View(MobilePhoneInformation)
save(MobilePhoneInformation,file = 'MobilePhoneInformation.rda')
nrow(na.omit(MobilePhoneInformation))
View(MobilePhoneInformation)
最终,获得800多行的信息,除去缺失值,剩下600多行数据,还不赖。 最后的数据可以在这里获得。
不过,数据还需要进一步清洗方能进行分析。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21