
R爬虫之京东商城手机信息批量获取
人手一部智能手机的移动互联网时代,智能手机对很多人来说,它就像我们身上生长出来的一个器官那样重要。如果你不能对各大品牌的『卖点』和『受众』侃上一阵,很可能会被怀疑不是地球人。
今天我们来探索一下,如何从『京东商城』爬取各大品牌的手机信息。
1.预备知识
R爬虫需要掌握的技能包括:
基本的网页知识,如html,XML文件的解析
分析XPath
使用网页开发工具
异常捕捉的处理
字符串的处理
正则表达式的使用
数据库的基本操作
不过不要担心,目前只需要掌握前三项技能,即可开始练习。
前三项技能的掌握可以参考 Automated Data Collection with R 一书。正常情况下,一天之内大致即可掌握。
2.页面分析
(待完善)
3.提取各大品牌的链接
#### packages we need ####
## ----------------------------------------------------------------------- ##
require(stringr)
require(XML)
require(RCurl)
library(Rwebdriver)
setwd("JDDownload")
BaseUrl<-"http://search.jd.com"
quit_session()
start_session(root = "http://localhost:4444/wd/hub/",browser = "firefox")
# post Base Url
post.url(url = BaseUrl)
SearchField<-element_xpath_find(value = '//*[@id="keyword"]')
SearchButton<-element_xpath_find(value = '//*[@id="gwd_360buy"]/body/div[2]/form/input[3]')
#keyword for search
keywords<-'手机'
element_click(SearchField)
keys(keywords)
element_click(SearchButton)
Sys.sleep(1)
#test
get.url()
pageSource<-page_source()
parsedSourcePage<-htmlParse(pageSource, encoding = 'UTF-8')
## Download Search Results
fname <- paste0(keywords, " SearchPage 1.html")
writeLines(pageSource, fname)
#get all the brand url
Brand<-'//*[@id="J_selector"]/div[1]/div/div[2]/div[3]/ul/li/a/@href'
BrandLinks<-xpathSApply(doc = parsedSourcePage, path = Brand)
View(data.frame(BrandLinks))
BrandLinks<-sapply(BrandLinks,function(x){
paste0(BaseUrl,"/",x)
})
save(BrandLinks,file = 'BrandLinks.rda')
4.访问每个品牌的页面,抓取每个品牌下的商品链接
##############Function 1 #################################3##
### 对各品牌的手机页面进行抓取 ########3#
getBrandPage<-function(BrandUrl,foreDownload = T){
#获取某品牌搜索页面
post.url(BrandUrl)
Brand_pageSource<-page_source()
#parse
parsedSourcePage<-htmlParse(Brand_pageSource, encoding = 'UTF-8')
#get brand name
BrandNamePath<-'//*[@id="J_crumbsBar"]/div[2]/div/a/em'
BrandName<-xpathSApply(doc = parsedSourcePage, path = BrandNamePath, fun = xmlValue)
#Save the page
BrandPageName<-paste0(BrandName,'_PageSource.html')
#Create a file
if(!file.exists(BrandName)) dir.create(BrandName)
# save
writeLines(text = Brand_pageSource, con = paste0(BrandName,'/',BrandPageName))
# get the product page url
#path
Brand_AllProductPath<-'//*[@id="J_goodsList"]/ul/li/div/div[4]/a/@href'
#url
Brand_AllProductLinks<-xpathSApply(doc = parsedSourcePage, path = Brand_AllProductPath)
# #remove some false url
# FalseLink<-grep(x = Brand_AllProductLinks,pattern = 'https',fixed = TRUE)
# Brand_AllProductLinks<-Brand_AllProductLinks[-FalseLink]
# add a head
Brand_AllProductLinks<-str_c('http:',Brand_AllProductLinks)
#save and return the url
save(Brand_AllProductLinks,file = paste0(BrandName,'_AllProductLinks.rda'))
return(Brand_AllProductLinks)
}
# test
BrandUrl<-BrandLinks[1]
getBrandPage(BrandUrl)
#get all the links
Brand_ProductLink<-list()
for(i in 1:length(BrandLinks)){
Sys.sleep(10)
Brand_ProductLink[[i]]<-getBrandPage(BrandUrl = BrandLinks[i])
}
#clean the links
All_ProductLink<-lapply(Brand_ProductLink,function(x){
TrueLink<-grep(x = x,pattern = 'http://item.jd.com/',fixed = TRUE,value = FALSE)
return(x[TrueLink])
})
# save the links
save(All_ProductLink,file = 'All_ProductLink.rda')
5.访问每个商品页面,提取有用信息
我们初步提取如下指标:标题(Title),卖点(KeyCount),价格(Price),评论数(commentCount),尺寸(Size),后置摄像头像素(BackBit),后置摄像头像素(ForwardBit),核数(Core),分辨率(Resolution),品牌(Brand),上架时间(onSaleTime).
#################################################
######## Function2 :访问每个商品页面,提取有用信息 ########
Product<-function(ProductLink){
post.url(ProductLink)
Sys.sleep(4)
# get the page
Product_pageSource<-page_source()
#parse
Parsed_product_Page<-htmlParse(Product_pageSource, encoding = 'UTF-8')
# get title,,key count,price,CommentCount and so on
#PATH
TitlePath<-'//*[@id="name"]/h1'
KeyCountPath<-'//*[@id="p-ad"]'
PricePath<-'//*[@id="jd-price"]'
commentCountPath<-'//*[@id="comment-count"]/a'
SizePath<-'//*[@id="parameter1"]/li[1]/div/p[1]'
BackBitPath<-'//*[@id="parameter1"]/li[2]/div/p[1]'
ForwardBitPath<-'//*[@id="parameter1"]/li[2]/div/p[2]'
CorePath<-'//*[@id="parameter1"]/li[3]/div/p[1]'
NamePath<-'//*[@id="parameter2"]/li[1]'
CodePath<-'//*[@id="parameter2"]/li[2]'
BrandPath<-'//*[@id="parameter2"]/li[3]'
onSaleTimePath<-'//*[@id="parameter2"]/li[4]'
ResolutionPath<-'//*[@id="parameter1"]/li[1]/div/p[2]'
Title<-xpathSApply(doc = Parsed_product_Page,path = TitlePath,xmlValue)
KeyCount<-xpathSApply(doc = Parsed_product_Page,path = KeyCountPath,xmlValue)
Price<-xpathSApply(doc = Parsed_product_Page,path = PricePath,xmlValue)
commentCount<-xpathSApply(doc = Parsed_product_Page,path = commentCountPath,xmlValue)
Size<-xpathSApply(doc = Parsed_product_Page,path = SizePath,xmlValue)
BackBit<-xpathSApply(doc = Parsed_product_Page,path = BackBitPath,xmlValue)
ForwardBit<-xpathSApply(doc = Parsed_product_Page,path = ForwardBitPath,xmlValue)
Core<-xpathSApply(doc = Parsed_product_Page,path = CorePath,xmlValue)
Name<-xpathSApply(doc = Parsed_product_Page,path = NamePath,xmlValue)
Code<-xpathSApply(doc = Parsed_product_Page,path = CodePath,xmlValue)
Resolution<-xpathSApply(doc = Parsed_product_Page,path = ResolutionPath,xmlValue)
Brand<-xpathSApply(doc = Parsed_product_Page,path = BrandPath,xmlValue)
onSaleTime<-xpathSApply(doc = Parsed_product_Page,path = onSaleTimePath,xmlValue)
# 整理成data frame
mydata<-data.frame(Title = Title,KeyCount = KeyCount, Price = Price,
commentCount = commentCount, Size = Size, BackBit = BackBit,
ForwardBit = ForwardBit, Core = Core, Name = Name,Code = Code,
Resolution = Resolution,
Brand = Brand, onSaleTime = onSaleTime)
#save the page
FileName<-paste0('Product/',Brand,Code,'_pageSource.html')
writeLines(text = Product_pageSource,con = FileName)
#return the data
return(mydata)
}
# test
quit_session()
start_session(root = "http://localhost:4444/wd/hub/",browser = "firefox")
load(file = 'All_ProductLink.rda')
ProductLink1<-All_ProductLink[[40]][1]
testData<-Product(ProductLink = ProductLink1)
#定义tryCatch
mySpider<-function(ProductLink){
out<-tryCatch(
{
message('This is the try part:')
Product(ProductLink = ProductLink)
},
error=function(e){
message(e)
return(NA)
},
finally = {
message("The end!")
}
)
return(out)
}
## loop
# get all data
ProductInformation<-list()
k <-0
for(i in 1:length(All_ProductLink)){
for(j in 1:length(All_ProductLink[[i]])){
k<-k+1
ProductInformation[[k]]<-mySpider(ProductLink = All_ProductLink[[i]][j])
}
}
# save my data
MobilePhoneInformation<-do.call(rbind,ProductInformation)
View(MobilePhoneInformation)
save(MobilePhoneInformation,file = 'MobilePhoneInformation.rda')
nrow(na.omit(MobilePhoneInformation))
View(MobilePhoneInformation)
最终,获得800多行的信息,除去缺失值,剩下600多行数据,还不赖。 最后的数据可以在这里获得。
不过,数据还需要进一步清洗方能进行分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23