
使用R拟合分布
几个常用的概率函数介绍
这里,参考R语言实战,以及[Fitting Distribution with R]的附录。
一.认识各种分布的形态
1.1 连续型随机变量的分布
分布,F−分布,Wishart
分布。
先上个图,一睹为快。
以上几个分布之间的关系如以下结构图所示。
[广义线性模型导论3rd edition,p10]
1.1.1 正态分布
正态分布N(μ,σ2)
的密度函数:
正态分布的形态如图。
library(ggplot2)ggtitle
("正态分布密度函数")
正态分布可以衍生出如下的分布。
若Zi∼ i.i.dN(0,1)
,则有
set.seed(123)
data_chisq<-data.frame(x1 = rchisq(200, 10, ncp = 0),
x2 = rchisq(200, 50, ncp =0),
x3 = rchisq(200, 100, ncp = 0))
data_chisq_long<-melt(data_chisq)
## No id variables; using all as measure variables
ggplot(data = data_chisq_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
("卡方分布密度函数")
1.1.3t−
分布
若,并且Z和X2独立,则有
set.seed(123)
data_t<-data.frame(x1 = rt(200, 10, ncp = 0),
x2 = rt(200, 50, ncp =0),
x3 = rt(200, 100, ncp = 0))
data_t_long<-melt(data_t)
## No id variables; using all as measure variables
ggplot(data = data_t_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
("t-分布密度函数")
1.1.4F−
分布
若,并且X1和X2相互独立,则有
set.seed(123)
data_f<-data.frame(x1 = rf(200,df1 = 10, df2 = 10, ncp = 0),
x2 = rf(200,df1 = 5, df2 = 3, ncp =0),
x3 = rf(200, df1 = 3, df2 = 5, ncp = 0))
data_f_long<-melt(data_f)
## No id variables; using all as measure variables
ggplot(data = data_f_long, aes(x = value, colour = variable))+
geom_density()+
ggtitle
1.1.5Wishart
分布
Wishart
分布是χ2分布在p
维正态情况下的推广。这里对多维情况暂不展开介绍。
1.2 离散型随机变量的分布
1.2.1 伯努利(Bernoulli
)分布
伯努利分布记为Bernoulli(p)
,只有0和1两种取值。概率测度函数如下:
1.2.2 二项(Binomial
二项分布B(n,p)
的可能取值范围为0,1,...,n。其概率测度函数如下:
ggtitle
("二项分布概率分布图")
1.2.3 负二项(NegativeBinomial
)分布
负二项分布。
1.2.4 几何(Geometric
)分布
1.2.5 泊松(Poission
)分布
1.3 指数分布族及其相互联系
1.3.1 指数分布族
[广义线性模型导论3rd edition,p58]
1.3.2 指数分布
1.3.3 Weibull分布
1.3.4 Beta分布
1.3.5 Gama分布
1.3.6 双指数(DoubleExponential
)分布
1.4 其他分布
1.4.1 均匀(Uniform
)分布
1.4.2 柯西(Cauchy
)分布
1.4.3 对数正态(Lognormal
)分布
1.5 可视化探索的步骤举例
首先,通过直方图,经验累积分布形态等来观察数据的分布形态。
#产生一组服从N(10,2)分布的随机数
二.模型选择
三.参数估计
模拟估计
矩估计
极大似然估计
四.拟合优度指标
五.拟合优度检验
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20