京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言生存分析
生存分析涉及预测当特定事件将要发生的时间。它也被称为故障时间分析,或死亡时间的分析。例如,预测天的人患有癌症将生存的数量和预测时间时机械系统是要失败。
在R中包名为 survival 是用来进行生存分析。这个软件包包含了 Surv()函数,这需要输入数据为一个R公式,被选中的变量分析中创建了一个生存的对象。然后我们使用 survfit()函数来创建一个情节进行分析。
安装软件包
install.packages("survival")
语法
对于R中创造生存分析的基本语法是:Surv(time,event) survfit(formula)
以下是所使用的参数的说明:
time 是跟进时间,直到事件发生。
event 表明出现预期的事件的状态。
formula 是预测变量之间的关系。
示例
我们会考虑 “pbc” 出现在上面已安装了生存包中的数据集。它介绍有关患有肝原发性胆汁性肝硬化(PBC)的人的生存数据点中间出现在数据集中的许多列,我们主要关心的字段 "time" 和 "status". 时间代表患者的登记和更早的患者接受了肝移植患者的或死亡之间的事件之间的天数。
# Load the library.
library("survival")
# Print first few rows.
print(head(pbc))
当我们上面的代码执行,它会产生以下结果及图表:
id time status trt age sex ascites hepato spiders edema bili chol albumin copper alk.phos ast
1 1 400 2 1 58.76523 f 1 1 1 1.0 14.5 261 2.60 156 1718.0 137.95
2 2 4500 0 1 56.44627 f 0 1 1 0.0 1.1 302 4.14 54 7394.8 113.52
3 3 1012 2 1 70.07255 m 0 0 0 0.5 1.4 176 3.48 210 516.0 96.10
4 4 1925 2 1 54.74059 f 0 1 1 0.5 1.8 244 2.54 64 6121.8 60.63
5 5 1504 1 2 38.10541 f 0 1 1 0.0 3.4 279 3.53 143 671.0 113.15
6 6 2503 2 2 66.25873 f 0 1 0 0.0 0.8 248 3.98 50 944.0 93.00
trig platelet protime stage
1 172 190 12.2 4
2 88 221 10.6 3
3 55 151 12.0 4
4 92 183 10.3 4
5 72 136 10.9 3
6 63 NA 11.0 3
从上面的数据我们正在考虑的时间和状态我们的分析。
应用 Surv() 和 survfit() 函数
现在,我们应用 Surv() 函数适用于设置上述数据,并创建一个情节用于显示的趋势。
# Load the library.
library("survival")
# Create the survival object.
survfit(Surv(pbc$time,pbc$status==2)~1)
# Give the chart file a name.
png(file = "survival.png")
# Plot the graph.
plot(survfit(Surv(pbc$time,pbc$status==2)~1))
# Save the file.
dev.off()
当我们上面的代码执行,它会产生以下结果及图表:
Call: survfit(formula = Surv(pbc$time, pbc$status == 2) ~ 1)
n events median 0.95LCL 0.95UCL
418 161 3395 3090 3853
在上面的图中的趋势,可以帮助我们预测在若干天结束的生存概率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20