
R语言生存分析
生存分析涉及预测当特定事件将要发生的时间。它也被称为故障时间分析,或死亡时间的分析。例如,预测天的人患有癌症将生存的数量和预测时间时机械系统是要失败。
在R中包名为 survival 是用来进行生存分析。这个软件包包含了 Surv()函数,这需要输入数据为一个R公式,被选中的变量分析中创建了一个生存的对象。然后我们使用 survfit()函数来创建一个情节进行分析。
安装软件包
install.packages("survival")
语法
对于R中创造生存分析的基本语法是:Surv(time,event) survfit(formula)
以下是所使用的参数的说明:
time 是跟进时间,直到事件发生。
event 表明出现预期的事件的状态。
formula 是预测变量之间的关系。
示例
我们会考虑 “pbc” 出现在上面已安装了生存包中的数据集。它介绍有关患有肝原发性胆汁性肝硬化(PBC)的人的生存数据点中间出现在数据集中的许多列,我们主要关心的字段 "time" 和 "status". 时间代表患者的登记和更早的患者接受了肝移植患者的或死亡之间的事件之间的天数。
# Load the library.
library("survival")
# Print first few rows.
print(head(pbc))
当我们上面的代码执行,它会产生以下结果及图表:
id time status trt age sex ascites hepato spiders edema bili chol albumin copper alk.phos ast
1 1 400 2 1 58.76523 f 1 1 1 1.0 14.5 261 2.60 156 1718.0 137.95
2 2 4500 0 1 56.44627 f 0 1 1 0.0 1.1 302 4.14 54 7394.8 113.52
3 3 1012 2 1 70.07255 m 0 0 0 0.5 1.4 176 3.48 210 516.0 96.10
4 4 1925 2 1 54.74059 f 0 1 1 0.5 1.8 244 2.54 64 6121.8 60.63
5 5 1504 1 2 38.10541 f 0 1 1 0.0 3.4 279 3.53 143 671.0 113.15
6 6 2503 2 2 66.25873 f 0 1 0 0.0 0.8 248 3.98 50 944.0 93.00
trig platelet protime stage
1 172 190 12.2 4
2 88 221 10.6 3
3 55 151 12.0 4
4 92 183 10.3 4
5 72 136 10.9 3
6 63 NA 11.0 3
从上面的数据我们正在考虑的时间和状态我们的分析。
应用 Surv() 和 survfit() 函数
现在,我们应用 Surv() 函数适用于设置上述数据,并创建一个情节用于显示的趋势。
# Load the library.
library("survival")
# Create the survival object.
survfit(Surv(pbc$time,pbc$status==2)~1)
# Give the chart file a name.
png(file = "survival.png")
# Plot the graph.
plot(survfit(Surv(pbc$time,pbc$status==2)~1))
# Save the file.
dev.off()
当我们上面的代码执行,它会产生以下结果及图表:
Call: survfit(formula = Surv(pbc$time, pbc$status == 2) ~ 1)
n events median 0.95LCL 0.95UCL
418 161 3395 3090 3853
在上面的图中的趋势,可以帮助我们预测在若干天结束的生存概率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10