R语言生存分析
生存分析涉及预测当特定事件将要发生的时间。它也被称为故障时间分析,或死亡时间的分析。例如,预测天的人患有癌症将生存的数量和预测时间时机械系统是要失败。
在R中包名为 survival 是用来进行生存分析。这个软件包包含了 Surv()函数,这需要输入数据为一个R公式,被选中的变量分析中创建了一个生存的对象。然后我们使用 survfit()函数来创建一个情节进行分析。
安装软件包
install.packages("survival")
语法
对于R中创造生存分析的基本语法是:Surv(time,event) survfit(formula)
以下是所使用的参数的说明:
time 是跟进时间,直到事件发生。
event 表明出现预期的事件的状态。
formula 是预测变量之间的关系。
示例
我们会考虑 “pbc” 出现在上面已安装了生存包中的数据集。它介绍有关患有肝原发性胆汁性肝硬化(PBC)的人的生存数据点中间出现在数据集中的许多列,我们主要关心的字段 "time" 和 "status". 时间代表患者的登记和更早的患者接受了肝移植患者的或死亡之间的事件之间的天数。
# Load the library.
library("survival")
# Print first few rows.
print(head(pbc))
当我们上面的代码执行,它会产生以下结果及图表:
id time status trt age sex ascites hepato spiders edema bili chol albumin copper alk.phos ast
1 1 400 2 1 58.76523 f 1 1 1 1.0 14.5 261 2.60 156 1718.0 137.95
2 2 4500 0 1 56.44627 f 0 1 1 0.0 1.1 302 4.14 54 7394.8 113.52
3 3 1012 2 1 70.07255 m 0 0 0 0.5 1.4 176 3.48 210 516.0 96.10
4 4 1925 2 1 54.74059 f 0 1 1 0.5 1.8 244 2.54 64 6121.8 60.63
5 5 1504 1 2 38.10541 f 0 1 1 0.0 3.4 279 3.53 143 671.0 113.15
6 6 2503 2 2 66.25873 f 0 1 0 0.0 0.8 248 3.98 50 944.0 93.00
trig platelet protime stage
1 172 190 12.2 4
2 88 221 10.6 3
3 55 151 12.0 4
4 92 183 10.3 4
5 72 136 10.9 3
6 63 NA 11.0 3
从上面的数据我们正在考虑的时间和状态我们的分析。
应用 Surv() 和 survfit() 函数
现在,我们应用 Surv() 函数适用于设置上述数据,并创建一个情节用于显示的趋势。
# Load the library.
library("survival")
# Create the survival object.
survfit(Surv(pbc$time,pbc$status==2)~1)
# Give the chart file a name.
png(file = "survival.png")
# Plot the graph.
plot(survfit(Surv(pbc$time,pbc$status==2)~1))
# Save the file.
dev.off()
当我们上面的代码执行,它会产生以下结果及图表:
Call: survfit(formula = Surv(pbc$time, pbc$status == 2) ~ 1)
n events median 0.95LCL 0.95UCL
418 161 3395 3090 3853
在上面的图中的趋势,可以帮助我们预测在若干天结束的生存概率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31