
R语言进行中文分词和聚类
由于时间较紧,且人手不够,不能采用分类方法,主要是没有时间人工分类一部分生成训练集……所以只能用聚类方法,聚类最简单的方法无外乎:K-means与层次聚类。
尝试过使用K-means方法,但结果并不好,所以最终采用的是层次聚类,也幸亏结果还不错……⊙﹏⊙
分词(Rwordseg包):
安装:
P.S.
由于我是64位机,但是配置的rj包只能在32bit的R上使用,而且Rwordseg包貌似不支持最新版本的R(3.01),所以请在32bit的R.exe中运行如下语句安装0.0-4版本:
貌似直接在Rstudio中运行会安装失败,而且直接在Rstudio中点击install安装,安装的是0.0-5版本,我就一直失败……
使用:
1. 分词时尽量关闭人名识别
否则会将“中秋国庆”,分为“中”“秋国庆“
2. 可以使用insertWords()函数添加临时的词汇
3. 对文档向量进行分词时,强烈建议用for循环对每一个元素执行segmentCN,而不要对整个向量执行!!!因为我蛋疼的发现对整个向量执行时,还是会出现识别人名的现象……
4. 运行完后请detach()包,removeWords()函数与tm包中的同名函数冲突。
微博分词的一些建议:
1. 微博内容中经常含有url,分词后会将url拆散当做英文单词处理,所以我们需要用正则表达式,将url去掉:
2. 微博中含有#标签#,可以尽量保证标签的分词准确,可以先提取标签,然后用insertWords()人工添加一部分词汇:
文本挖掘(tm包):
语料库:
分词之后生成一个列表变量,用列表变量构建语料库。
由于tm包中的停用词()都是英文(可以输入stopwords()查看),所以大家可以去网上查找中文的停用词(一般700多个的就够了,还有1208个词版本的),用removeWords函数去除语料库中的停用词:
TDM:
生成语料库之后,生成词项-文档矩阵(Term Document Matrix,TDM),顾名思义,TDM是一个矩阵,矩阵的列对应语料库中所有的文档,矩阵的行对应所有文档中抽取的词项,该矩阵中,一个[i,j]位置的元素代表词项i在文档j中出现的次数。
由于tm包是对英文文档就行统计挖掘的,所以生成TDM时会对英文文档进行分词(即使用标点和空格分词),之前Rwordseg包做的就是将中文语句拆分成一个个词,并用空格间隔。
创建TDM的语句为:
变量control是一个选项列表,控制如何抽取文档,removePunctuation表示去除标点,minDocFreq=5表示只有在文档中至少出现5次的词才会出现在TDM的行中。
tm包默认TDM中只保留至少3个字的词(对英文来说比较合适,中文就不适用了吧……),wordLengths = c(1, Inf)表示字的长度至少从1开始。
默认的加权方式是TF,即词频,这里采用Tf-Idf,该方法用于评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度:
1. 在一份给定的文件里,词频 (term frequency, TF) 指的是某一个给定的词语在该文件中出现的次数。这个数字通常会被归一化,以防止它偏向长的文件。
2. 逆向文件频率 (inverse document frequency, IDF) 是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。
3. 某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于保留文档中较为特别的词语,过滤常用词。
由于TDM大多都是稀疏的,需要用removeSparseTerms()函数进行降维,值需要不断的测试,我一般会使词项减少到原有的一半。
层次聚类:
层次聚类的核心实际在距离阵的计算,一般聚类时会使用欧氏距离、闵氏距离等,但在大型数据条件下会优先选择 cosine 距离,及 dissmilarity 函数:
(P.S.要使用cosine方法,需要先安装proxy包。)
层次聚类的方法也有很多,这里选用mcquitty,大家还是多试试,本文给出的选择不一定适合你~
注意:由于R对向量的大小有限制,所以在计算距离时,请优先使用64bit,3.0版本的R~
但如果出现如下报错信息:
"Error in vector(typeof(x$v), nr * nc): vector size cannot be NA
In addition: Warning message:
In nr * nc : NAs produced by integeroverflow"
恭喜你!这个问题64位版本的R也解决不了,因为矩阵超出了R允许的最大限制~我也是遇到同样的问题,所以没办法,只能将原始数据进行拆分,不过我的情况是多个微博账户,但彼此之间的微博分类差不太多,所以可以进行拆分。强烈推荐大家有问题去stackoverflow查找!
(我看到有国外友人说可以用int64包尝试一下,因为tdm其实也是个list,但我没试成功……)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10