
R字符串处理应用之邮件考勤自动化
最近发现,担任助教真不是一件轻松的事情啊。虽然老师一直在想方设法减轻我的工作负担,可是核对名单真的是一件考验眼力和耐力的事情。
最近有一件非常艰巨的任务:检查上周的『考勤邮件』。这个『考勤邮件』,容我耐心的解释一番。上周,老师为了不浪费大家的时间,通过在某几分钟内发送一封邮件到公共邮箱的方法来签到。
而我今天才拿到选课学生的名单。我们知道,邮件过了一段时间,标题显示的接收时间就会改变。这个时候,为了确定邮件的发送时间,我必须要每封邮件都打开来看一下,再找到相应的名单,然后打上一个满意的勾。然而,这可是五十多封邮件啊!!!
立志成为数(一)据(名)科(懒)学(人)家的我,怎能甘心做如此机械的活呢?于是,想起最近总结的一篇字符处理相关的博客,正好可以用上。
说干就干!下面,我们就来探索一番,如何用R实现邮件考勤全自动化。
载入数据
首先,从公共邮箱批量下载数据。并载入R。
library(stringr)
library(openxlsx)
#load Name list
NameInformation<-read.xlsx("data/名单_20160308.xlsx",sheet = 1,colNames = TRUE)
str(NameInformation)
NameList<-NameInformation$姓名
NameList<-str_trim(NameList)
#read E-mail name
EmailName<-dir("data/第一次考勤/信件打包")
查看缺勤人员名单
载入数据的第一步,当然是先看看是否全勤啦~
如果没人缺勤,后面的日期提取等脏活累活就可以不用干啦!(再次暴露了懒人的本性= =!)
#match name list,remove E-mails which's subject NOT contain names ON the namelist
# detact weather the subject contains the name
ExistStatus<-lapply(NameList, function(x){
Exist<-str_detect(EmailName,x)
return(sum(Exist))
})
ExistStatus<-unlist(ExistStatus)
# find not checked names
print(paste0("缺勤的同学:",NameList[!ExistStatus]))
#str_detect(EmailName,"张三")
果不其然,有些同学还是不够团结啊!有几个没发邮件的。当然,谨慎的黄老师还是用str_detect()函数重新核对了一下,误伤了同学可不好办呐。
提取邮件接收时间
打开文本编辑器,仔细看了一下几封邮件,发现日期格式大概是这样的:
Date: Wed, 2 Mar 2016 08:06:28 +0800
先将邮件内容读入一个list。接着,用正则表达式,把含有Date: Wed, 2 Mar 2016字样的这一行提取出来。然后,只提取我们需要的时间。最后,使用striptime()函数将字符串转换成时间格式。然而,在Windows下一直得到的返回值一直是NA,在Linux下可以正确转换。万恶的微软!
###########################
## check in email received time ###
# get email content
EmailContent<-lapply(EmailName,function(x){
readLines(con<-file(paste0("data/第一次考勤/信件打包/",x),encoding = 'UTF-8'))
})
# get date and time
EmailDate<-lapply(EmailContent,function(x){
date_vec<-str_subset(x,"Date: Wed, 2 Mar 2016")
date<-str_sub(date_vec,start = 7, end = 30)
return(date)
})
# format conveting
## windows 下有问题,linux下没问题
EmailDate<-lapply(EmailDate,function(x){
strptime(x,"%a, %d %b %Y %I:%M:%S")
})
EmailDate<-unlist(EmailDate)
提取名字
为了做到有凭有据,还是要从主题提取一下名字。这个时候,跟已有的选课名单进行一一匹配即可。
然而,我们的课实在太火爆!有些没有选到课的同学,为了刷刷自己的存在感,也发来了『贺电』。这可不好办!!!如果是一个个核对,找了半天,发现没在选课名单上,岂不气煞人也!然而,有了R,我只需要一个IF语句就搞定啦。
还有一些不知是手抖还是为了刷存在感,的同学,连发了几封E-mail。当然,我并没有生气,我只需要一行代码就可以轻松化解难题。
########################################33
## exteact name on the subject ##
NameOnSubject<-lapply(EmailName,function(x){
ExtractName<-str_extract(x,NameList)
## 有的同学没有选课也发了邮件,或者不小心下载了垃圾邮件
if(sum(is.na(ExtractName))==51){
return(NA)
}
else{
Name<- ExtractName[!is.na(ExtractName)]
return(Name)
}
})
### combine Date and name
NameOnSubject<-unlist(NameOnSubject)
EmailData<-data.frame(CheckTime= EmailDate,NameOnSubject = NameOnSubject,stringsAsFactors = FALSE)
#先去掉名字为NA的邮件
EmailData<-EmailData[!is.na(EmailData$NameOnSubject),]
# 有的同学手抖,发了几封邮件,需要去重
EmailData<-EmailData[!duplicated(EmailData[,"NameOnSubject"]),]
View(EmailData)
str(EmailData)
合并数据集
最后,跟选课名单进行合并即大功告成啦!
其实仔细想想,邮箱考勤这个机制存在很大的bug。
我们可以一起发挥智慧,思考一下如何加入防作弊机制。如给每个在场的人发送一个唯一的随机码随邮件发送?(不想上课的同学会不会打我?!逃~~~~)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28