
R字符串处理应用之邮件考勤自动化
最近发现,担任助教真不是一件轻松的事情啊。虽然老师一直在想方设法减轻我的工作负担,可是核对名单真的是一件考验眼力和耐力的事情。
最近有一件非常艰巨的任务:检查上周的『考勤邮件』。这个『考勤邮件』,容我耐心的解释一番。上周,老师为了不浪费大家的时间,通过在某几分钟内发送一封邮件到公共邮箱的方法来签到。
而我今天才拿到选课学生的名单。我们知道,邮件过了一段时间,标题显示的接收时间就会改变。这个时候,为了确定邮件的发送时间,我必须要每封邮件都打开来看一下,再找到相应的名单,然后打上一个满意的勾。然而,这可是五十多封邮件啊!!!
立志成为数(一)据(名)科(懒)学(人)家的我,怎能甘心做如此机械的活呢?于是,想起最近总结的一篇字符处理相关的博客,正好可以用上。
说干就干!下面,我们就来探索一番,如何用R实现邮件考勤全自动化。
载入数据
首先,从公共邮箱批量下载数据。并载入R。
library(stringr)
library(openxlsx)
#load Name list
NameInformation<-read.xlsx("data/名单_20160308.xlsx",sheet = 1,colNames = TRUE)
str(NameInformation)
NameList<-NameInformation$姓名
NameList<-str_trim(NameList)
#read E-mail name
EmailName<-dir("data/第一次考勤/信件打包")
查看缺勤人员名单
载入数据的第一步,当然是先看看是否全勤啦~
如果没人缺勤,后面的日期提取等脏活累活就可以不用干啦!(再次暴露了懒人的本性= =!)
#match name list,remove E-mails which's subject NOT contain names ON the namelist
# detact weather the subject contains the name
ExistStatus<-lapply(NameList, function(x){
Exist<-str_detect(EmailName,x)
return(sum(Exist))
})
ExistStatus<-unlist(ExistStatus)
# find not checked names
print(paste0("缺勤的同学:",NameList[!ExistStatus]))
#str_detect(EmailName,"张三")
果不其然,有些同学还是不够团结啊!有几个没发邮件的。当然,谨慎的黄老师还是用str_detect()函数重新核对了一下,误伤了同学可不好办呐。
提取邮件接收时间
打开文本编辑器,仔细看了一下几封邮件,发现日期格式大概是这样的:
Date: Wed, 2 Mar 2016 08:06:28 +0800
先将邮件内容读入一个list。接着,用正则表达式,把含有Date: Wed, 2 Mar 2016字样的这一行提取出来。然后,只提取我们需要的时间。最后,使用striptime()函数将字符串转换成时间格式。然而,在Windows下一直得到的返回值一直是NA,在Linux下可以正确转换。万恶的微软!
###########################
## check in email received time ###
# get email content
EmailContent<-lapply(EmailName,function(x){
readLines(con<-file(paste0("data/第一次考勤/信件打包/",x),encoding = 'UTF-8'))
})
# get date and time
EmailDate<-lapply(EmailContent,function(x){
date_vec<-str_subset(x,"Date: Wed, 2 Mar 2016")
date<-str_sub(date_vec,start = 7, end = 30)
return(date)
})
# format conveting
## windows 下有问题,linux下没问题
EmailDate<-lapply(EmailDate,function(x){
strptime(x,"%a, %d %b %Y %I:%M:%S")
})
EmailDate<-unlist(EmailDate)
提取名字
为了做到有凭有据,还是要从主题提取一下名字。这个时候,跟已有的选课名单进行一一匹配即可。
然而,我们的课实在太火爆!有些没有选到课的同学,为了刷刷自己的存在感,也发来了『贺电』。这可不好办!!!如果是一个个核对,找了半天,发现没在选课名单上,岂不气煞人也!然而,有了R,我只需要一个IF语句就搞定啦。
还有一些不知是手抖还是为了刷存在感,的同学,连发了几封E-mail。当然,我并没有生气,我只需要一行代码就可以轻松化解难题。
########################################33
## exteact name on the subject ##
NameOnSubject<-lapply(EmailName,function(x){
ExtractName<-str_extract(x,NameList)
## 有的同学没有选课也发了邮件,或者不小心下载了垃圾邮件
if(sum(is.na(ExtractName))==51){
return(NA)
}
else{
Name<- ExtractName[!is.na(ExtractName)]
return(Name)
}
})
### combine Date and name
NameOnSubject<-unlist(NameOnSubject)
EmailData<-data.frame(CheckTime= EmailDate,NameOnSubject = NameOnSubject,stringsAsFactors = FALSE)
#先去掉名字为NA的邮件
EmailData<-EmailData[!is.na(EmailData$NameOnSubject),]
# 有的同学手抖,发了几封邮件,需要去重
EmailData<-EmailData[!duplicated(EmailData[,"NameOnSubject"]),]
View(EmailData)
str(EmailData)
合并数据集
最后,跟选课名单进行合并即大功告成啦!
其实仔细想想,邮箱考勤这个机制存在很大的bug。
我们可以一起发挥智慧,思考一下如何加入防作弊机制。如给每个在场的人发送一个唯一的随机码随邮件发送?(不想上课的同学会不会打我?!逃~~~~)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04