大数据为企业外部风险管理带来的革命
大数据的取样是全样本,从各个层面可以实现信息以及资源共享,减少部门之间因为壁垒而存在的隔阂。可见,只有共享数据才能带来巨大的价值。
在解决数据共享、打破数据孤岛层面,最行之有效的手段是跨行业联防联控和服务在云端。将传统本地化的风险分析的工作放到云端去做,这是一个创新之举,解决了以前很多专业分析公司解决不了的难题,同时也需要客户给予大数据公司极大的信任,因为如何建立这个信任感曾一度是个挑战。
大数据风控和传统的风控技术的区别在于前者在风控的各个环节里利用了云端数据的力量。一家基于云端的数据分析公司,将原来一些在本地的风险分析工作放到了云端,而且放大了在云端做数据分析的优势,可以做交叉验证和异常点分析,从而更加有效地发现风险所在。
目前,“跨行业联防联控”的理念,正被国内越来越多的金融机构所接受和推广。例如,我们在大数据风控领域通过联防联控建立“智能诚信网络”,在人与人、企业与人之间进行关联分析,便于提前预防各种社会风险。以近期正在尝试开展的实时动态展示全国各领域的欺诈情况为例,不仅能充分展现大数据的感知和预测能力,而且也能为放贷机构提供提前预警,弥补传统金融机构在数据分析上的盲区。与大部分同业机构不同,利用大数据进行风险管理,不仅可以服务金融机构,还为非银行信贷、保险、基金、第三方支付、航旅、电商、OTO、游戏、社交平台等行业服务;同时能揪出婚托、酒托、网购差评师等一系列“坏人”,构建跨行业联防联控的系统性能力。通过上述机构反馈回来的各种信息,均可纳入产品体系,成为智能诚信网络的一部分,从而有效解决数据孤岛问题。
重塑风控理念全生命周期保护的价值
在传统的风险管理理念中,比较注重制定相关的应对措施,但在预防和管理上存在一定的欠缺。使用大数据技术可以提高整体的整合能力,便于应对各个环节,同时在缓解,学习等环节上也十分有利。以金融企业风控为例,目前所提倡的“智能诚信网络”标准业务流程,通常包括前端页面用户资料申请提交和收集,反欺诈、合规、逻辑校验,核心决策授信,以及最后的逾期催款。
这种基于大数据的风险控制、反欺诈及数据核验服务,同时具备决策引擎、模型平台、复杂网络为代表的核心风控工具以及授权爬取、代理检测、人机识别、地址匹配、地理位置识别等核心风控技术。针对上述各个环节,利用这些大数据风控技术能够实现全流程的风控服务。
从用户资料开始的用户画像,到贷前的反欺诈、贷前的信用授信,再到贷后监控及最末端的逾期触达服务,整个金融业务流程置于大数据风控和智能分析服务之下,保护措施较为周全。同时,围绕事前、事中及事后,大数据所打造的闭环风控服务,可以事前通过监测和搜集一些黑产情报,提前发现潜在的风险。
变革风险体制独立和第三方的公信力
对于大多数企业来说,在面对风控体系建设时,仍要考虑效率和成本的问题,特别是人力、技术和管理上的成本。而大数据技术则可以将信息进行收集,提供专业的分工方法以及使得整个管理体制围绕危机事件形成一个数据流,有效提升团队的人员以及整个机构的运转能力,提高风险处理的应对效能。
一家独立第三方的大数据风控服务公司能为许多的企业机构服务,在提升效率之余还能降低企业成本,这就是第三方专业服务机构的价值。事实上,重点强调独立第三方专业服务机构的身份,已经成为一个重要的命题。2017年4月20日,在北京举办的“个人信息保护与征信管理国际研讨会”上,中国人民银行副行长陈雨露就曾强调过这项基本原则。
这个行业为什么需要独立第三方原则?好比不能既当运动员,又当裁判员。在市场分层方面,因为这样做没有利益冲突或利益关联,因而就没有行为的扭曲。此外,独立第三方没有利益竞争,有利于解决信息孤岛的问题。
独立第三方的标准主要包括以下三个方面:公司治理的独立,在公司独立运作过程当中它不能被个别股东操纵;数据来源多元独立,分析模型独立;业务独立,不参与信息源使用者同范围的业务。其中,特别值得注意的是,大数据风控行业,不仅要考验一家公司的技术和产品实力,也十分考验企业的专注力。
创新风控技术大数据和人工智能的力量
针对平台的资产获取、风险控制、信息披露、贷后管理、逾期催收等运营需求,大数据结合人工智能,已经能够提供个性化的智能解决方案,从而提高各行业产品质量及服务效率。实际上,人工智能是基于海量数据的深度学习系统,人工智能与大数据是相生相伴的两项技术,企业机构用好这两项技术,必然能使风控水平得到巨大的提升
以金融行业为例,大数据风控公司可以通过从网上收集用户的职业、学历、资产、负债等强相关数据,以及一些弱相关数据包括用户在社交网络上的发言、兴趣爱好、朋友圈、星座等,进行快速分析预测,从而对其进行信用评级。大数据风控通过对全面的数据(数据的广度)、强相关数据(数据的深度)、实效性数据(数据的鲜活度)进行整合分析,提升信用风险管理水平,客观地反映用户风险水平,让风险评估效果更精确。相比线下考察的方式,大数据应用更为便捷,它通过海量数据的分析,可以轻松完成一个借贷人的用户画像,并给该借贷人提供风控建议。
近年,金融行业在人工智能领域的探索一直不间断。在金融行业的支付、投资、贷款、个人理财、反欺诈、区块链、银行和保险等领域都出现了人工智能的身影。
在泛互联网的环境里,金融风控面临的传统个体欺诈已迅速演变为有组织、有规模的群体欺诈和关联风险。而传统反欺诈还停留在识别一度风险等这种简单规则方式,如联系人中借贷人个数等,对于二度、三度乃至更广范围的网络全局风险苦无良策。结合机器学习里面基于图谱的复杂网络技术很好地解决了这一诉求,可以依据申请人、手机号、设备、IP地址等各类信息节点构建庞大网络图,并可在此之上进行基于规则和机器学习的反欺诈模型实时识别。例如,复杂网络可监测相关设备ID在哪些借贷网站上进行注册、同一设备是否下载多个借贷App,可以实时发现多头贷款的征兆,把风险控制到最低。
目前,大数据和人工智能绝不仅仅是工具,作为一种技术革新,未来对于企业的作用也绝不仅仅体现在风控层面。大数据环境还将对审计思路、审计方式方法、组织模式及相关制度等方面产生深远的影响,促进整个行业健康发展。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16