R语言—日常随笔
1.字符处理函数:paste()
需求:将字符向量中的字符串,用逗号隔开,合并为一句话。
> ##字符向量
> ls_1
[1] "天津" "上海" "安徽" "福建" "四川" "重庆" "陕西" "青海" "新疆"
> ##用逗号隔开字符串,并合并为一句话
> paste(ls_1, sep = "",collapse=",")
[1] "天津,上海,安徽,福建,四川,重庆,陕西,青海,新疆"
2.在数据整合过程中,数字转换为带百分号(%)的形式,使用的方法。
> paste(20.21,"%",sep="")
[1] "20.21%"
可以通过上面的方式实现将数字带上%号,但数字也就变成了字符串。
3.如果表格结构为三列,想根据其中两列对第三列数字进行汇总。可采用下面方法。
> ##生成案例数据
> names<-c("a","b","b","c","c")
> sex<-c("男","女","女","男","男")
> score<-c(1.56,1.78,1.82,1.32,1.21)
> man<-data.frame(names,sex,score)
> ##查看数据结构
> man
names sex score
1 a 男 1.56
2 b 女 1.78
3 b 女 1.82
4 c 男 1.32
5 c 男 1.21
> ##根据姓名与性别汇总成绩
> aggregate(man$score~man$names+man$sex,man,mean)
man$names man$sex man$score
1 a 男 1.560
2 c 男 1.265
3 b 女 1.800
4.字符串去空格
##将sd中的空格去除
> sd<-("as db ")
> gsub(" ","",sd)
[1] "asdb"
注:sub与gsub的区别在于sub只替换第一次发现的字符,而gsub是不计匹配到的次数,发现符合匹配都会被替换。
5.单列去重(unique)
> ##创造案例数据
> x <- c(3:5, 11:8, 8 + 0:5)
> ##查看数据样式
> x
[1] 3 4 5 11 10 9 8 8 9 10 11 12 13
> ##查看去重后效果
> unique(x)
[1] 3 4 5 11 10 9 8 12 13
2.ifelse语句返回值的特殊性
正常的ifelse语句格式为ifelse(判断条件,TRUE时执行,FALSE时执行)
学过编程语言的人不难理解,但在R中容易被误导。今天我遇到了一个情况。需求是判断一个字符向量的长度,如果大于0,返回向量所有内容,否则输出"没有"两个字。结果却只输出了1个元素。
代码如下:
> ##可以看出向量有值
> ls_1
[1] "天津" "上海" "安徽" "福建" "四川" "重庆" "陕西" "青海" "新疆"
> ##向量内有9个元素
> length(ls_1)
[1] 9
> ##进行判断
> ifelse(length(ls_1),ls_1,"没有")
[1] "天津"
> ##结果只显示了第一个元素,后来得知,判断条件有几个元素,就会返回ls_1向量的几个元素
> ##如果我想每次都全部现实,可以这样写
> ifelse(is.na(ls_1),"没有",ls_1)
[1] "天津" "上海" "安徽" "福建" "四川" "重庆" "陕西" "青海" "新疆"
总结:R语言的if判断语句,虽然大部分情况都是和其他编程语言一样使用,但在返回内容包含多个值时,需要注意返回结果是否正确。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21