京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言—日常随笔
1.字符处理函数:paste()
需求:将字符向量中的字符串,用逗号隔开,合并为一句话。
> ##字符向量
> ls_1
[1] "天津" "上海" "安徽" "福建" "四川" "重庆" "陕西" "青海" "新疆"
> ##用逗号隔开字符串,并合并为一句话
> paste(ls_1, sep = "",collapse=",")
[1] "天津,上海,安徽,福建,四川,重庆,陕西,青海,新疆"
2.在数据整合过程中,数字转换为带百分号(%)的形式,使用的方法。
> paste(20.21,"%",sep="")
[1] "20.21%"
可以通过上面的方式实现将数字带上%号,但数字也就变成了字符串。
3.如果表格结构为三列,想根据其中两列对第三列数字进行汇总。可采用下面方法。
> ##生成案例数据
> names<-c("a","b","b","c","c")
> sex<-c("男","女","女","男","男")
> score<-c(1.56,1.78,1.82,1.32,1.21)
> man<-data.frame(names,sex,score)
> ##查看数据结构
> man
names sex score
1 a 男 1.56
2 b 女 1.78
3 b 女 1.82
4 c 男 1.32
5 c 男 1.21
> ##根据姓名与性别汇总成绩
> aggregate(man$score~man$names+man$sex,man,mean)
man$names man$sex man$score
1 a 男 1.560
2 c 男 1.265
3 b 女 1.800
4.字符串去空格
##将sd中的空格去除
> sd<-("as db ")
> gsub(" ","",sd)
[1] "asdb"
注:sub与gsub的区别在于sub只替换第一次发现的字符,而gsub是不计匹配到的次数,发现符合匹配都会被替换。
5.单列去重(unique)
> ##创造案例数据
> x <- c(3:5, 11:8, 8 + 0:5)
> ##查看数据样式
> x
[1] 3 4 5 11 10 9 8 8 9 10 11 12 13
> ##查看去重后效果
> unique(x)
[1] 3 4 5 11 10 9 8 12 13
2.ifelse语句返回值的特殊性
正常的ifelse语句格式为ifelse(判断条件,TRUE时执行,FALSE时执行)
学过编程语言的人不难理解,但在R中容易被误导。今天我遇到了一个情况。需求是判断一个字符向量的长度,如果大于0,返回向量所有内容,否则输出"没有"两个字。结果却只输出了1个元素。
代码如下:
> ##可以看出向量有值
> ls_1
[1] "天津" "上海" "安徽" "福建" "四川" "重庆" "陕西" "青海" "新疆"
> ##向量内有9个元素
> length(ls_1)
[1] 9
> ##进行判断
> ifelse(length(ls_1),ls_1,"没有")
[1] "天津"
> ##结果只显示了第一个元素,后来得知,判断条件有几个元素,就会返回ls_1向量的几个元素
> ##如果我想每次都全部现实,可以这样写
> ifelse(is.na(ls_1),"没有",ls_1)
[1] "天津" "上海" "安徽" "福建" "四川" "重庆" "陕西" "青海" "新疆"
总结:R语言的if判断语句,虽然大部分情况都是和其他编程语言一样使用,但在返回内容包含多个值时,需要注意返回结果是否正确。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19