京公网安备 11010802034615号
经营许可证编号:京B2-20210330
信用评分建模中样本容量不足怎么办
在建立个人信用评分模型时,不仅需要有足够多的表征信贷申请人信用行为的特征变量,而且建模样本的容量也必须达到一定的数量。
一般来说,样本容量越大,所建立的模型的精度或预测能力就越高,模型也越稳健。
至于到底需要容量多大的样本才能建立一个预测精度较高,又具有较好稳健性的个人信用评分模型,目前还没有一个基于理论测算的最优数目,不过通过多年的建模实践,国外的许多学者提出了一些经验准则。
这些经验准则告诉我们,问题的关键并不在于建模样本容量的大小,而在于坏客户样本的数量。一个由50000个好客户,500个坏客户构成的建模样本并不比一个由5000个好客户,500个坏客户构成的样本含有更多的信息,因为在建立个人信用评分模型时坏客户样本所含的信息是我们重点关注的。
在实际的建模总体中,通常好客户的数量总是远远大于坏客户的数量,因此建模总体中坏客户数量的多少是能否成功地建立个人信用模型的关键因素之一。
在个人征信体系发达的国家,建模样本容量不足应该不是一个严重的问题。
这些国家解决这一问题可以有多种途径:
当需要对某种信用产品申请人进行评分时,若样本容量不足而不能建立评分模型,可以先用征信局的“通用化评分”来代替。待好、坏客户样本累积到一定容量后再建模。实际上有许多信用产品根本就不建立定制化的评分模型,而是直接用征信局提供的“通用化评分”对客户进行评价,当然这需要一定的成本。
由于社会征信体系较发达的国家一般其信用市场也较发达,信用产品比较丰富,在一个新的信用产品推广的初期,往往可以找到与之相类似的产品,用类似产品的样本建模在初期也是一个不错的选择。
在征信体系发达的国家,无论是信贷机构还是信用咨询机构都有较多的信用分析专家,利用这些专家的知识和经验可以建立所谓的“专家模型”。
就中国目前的状况而言,当建模样本不足时,以上3中解决方法均不是很有效的:
由于征信体系不发达,没有“通用化评分”可资利用;
消费信用产品还比较单一;
有关消费信用分析的专家还不多。
因此,样本容量不足是在中国现阶段建立个人信用评分模型时常常遇到的问题之一。
解决建模样本容量不足的方法有两类方法可以尝试:
一类是合并不同银行的相同产品的样本;
另一种是统计学中的Bootstrap方法。
方法1 将不同客户总体数据合并建模
当样本量不足时,最容易想到的一个解决办法是:将不同银行的相同产品的样本合并起来建立模型。
例如,当某个商业银行要针对其所发行的一种信用卡建立个人信用评分模型时,它可以将该银行在不同地区的分行的客户数据进行合并,这样在样本的数量上就可以满足建模的要求。
值得注意的是,这种合并不同总体的做法与通常建立个人信用评分时的做法是相反的。在建立个人信用评分模型时,为了提高模型的预测精度,当总体内部差异较大时,如果样本的容量足够大,在实际中的做法是将总体划分成几个内部一致性较好的子总体,然后对各个子总体分别建模。
关于将不同客户总体数据合并后建立模型的效果,国外的学者有过一些研究。大部分的实证研究表明,合并后建立的模型其精度往往会下降。
精度下降的原因可能来自两个方面:
由于各总体特征的差异较大影响了模型的预测能力;
各总体中保存的特征变量不尽一致,建模时往往只能使用各总体共有的部分。特征变量的减少,往往损失许多有用的信息。
方法2 Bootstrap方法应用于处理样本容量不足不同客户总体数据合并建模
将样本分成两部分,一部分是用于建模,另一部分用于检验。
这样做的主要目的是为了避免同时将一组样本既作为训练样本(用于建立模型)又作为检验样本从而对预测精度的估计过于乐观。在样本容量充足的情况下,这种做法是很有效的。但是在有些情况下,建模的样本数量并不是很充足。在这种情况下若还保留一部分样本进行检验显然不是一种有效的做法,这样会白白浪费掉保留样本中所包含的信息。
统计学中发展了多种方法来克服上述保留样本在样本容量不足时的缺陷,BootStrap方法是一种被证明行之有效的方法。
实际中的算法如下:
从经验分布F_n中有放回地抽取一个容量为n的样本(x_1,x_2,⋯,x_n)。通常称为BootStrap样本。
利用此样本计算θ的估计值,θ^*=θ(x_1,x_2,⋯,x_n)。通常称为BootStrap估计。
将过程(1),(2)重复K次,这样就得到K个BootStrap样本及K个BootStrap估计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26