京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Sql Server 查询系统资源的使用情况
如果你的SQL Server运行很长时间,并且进行了重大改变,例如添加了一个新索引,那么你应该考虑清理旧的统计信息,否则旧的累计统计数据会影响结果。
DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR) ;
-- Total waits are wait_time_ms (high signal waits indicates CPU pressure)
SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM(wait_time_ms) AS NUMERIC(20,2)) AS [%signal (cpu) waits] ,
CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM(wait_time_ms) AS NUMERIC(20, 2)) AS [%resource waits]
FROM sys.dm_os_wait_stats ;
此查询可用于帮助确认 CPU 压力。因为信号等待时间等待 CPU 服务线程,如果记录总信号等待它大致大比 10%到 15%,则表明这是一种很好的 CPU 压力指标
确定占用时间的最多资源
-- Isolate top waits for server instance since last restart
-- or statistics clear
WITH Waits AS ( SELECT wait_type , wait_time_ms / 1000. AS wait_time_s ,
100.* wait_time_ms / SUM(wait_time_ms) OVER ( ) AS pct ,
ROW_NUMBER() OVER ( ORDER BY wait_time_ms DESC ) AS rn
FROM sys.dm_os_wait_stats
WHERE
wait_type NOT IN ( 'CLR_SEMAPHORE', 'LAZYWRITER_SLEEP',
'RESOURCE_QUEUE', 'SLEEP_TASK', 'SLEEP_SYSTEMTASK',
'SQLTRACE_BUFFER_FLUSH', 'WAITFOR', 'LOGMGR_QUEUE',
'CHECKPOINT_QUEUE', 'REQUEST_FOR_DEADLOCK_SEARCH', 'XE_TIMER_EVENT',
'BROKER_TO_FLUSH', 'BROKER_TASK_STOP', 'CLR_MANUAL_EVENT',
'CLR_AUTO_EVENT',
'DISPATCHER_QUEUE_SEMAPHORE', 'FT_IFTS_SCHEDULER_IDLE_WAIT', 'XE_DISPATCHER_WAIT', 'XE_DISPATCHER_JOIN' ) )
SELECT W1.wait_type , CAST(W1.wait_time_s AS DECIMAL(12, 2)) AS wait_time_s , CAST(W1.pct AS DECIMAL(12, 2)) AS pct ,
CAST(SUM(W2.pct) AS DECIMAL(12, 2)) AS running_pct
FROM Waits AS W1
INNER JOIN Waits AS W2 ON W2.rn <= W1.rn
GROUP BY W1.rn , W1.wait_type , W1.wait_time_s , W1.pct
HAVING SUM(W2.pct) - W1.pct < 95 ; -- percentage threshold
此脚本将会帮助您找到实例级最大的瓶颈。这可以帮助您您优化的努力集中在一个特定类型的问题。例如,如果累积顶部等待类型是我/O 有关,磁盘,然后会要调查这一问题进一步使用磁盘相关 DMV 查询和性能监视器计数器。
查询数据库恢复模式、 日志重用等待描述、 事务日志的大小、 使用的日志空间、 日志使用百分比、 兼容级别和页面验证
-- Recovery model, log reuse wait description, log file size,
-- log usage size and compatibility level for all databases on instance
SELECT db.[name] AS [Database Name] , db.recovery_model_desc AS [Recovery Model]
, db.log_reuse_wait_desc AS [Log Reuse Wait Description] , ls.cntr_value AS [Log Size (KB)]
,lu.cntr_value AS [Log Used (KB)]
, CAST(CAST(lu.cntr_value AS FLOAT) / CAST(ls.cntr_value AS FLOAT) AS DECIMAL(18,2)) * 100 AS [Log Used %]
, db.[compatibility_level] AS [DB Compatibility Level] , db.page_verify_option_desc AS [Page Verify Option]
FROM sys.databases AS db
INNER JOIN sys.dm_os_performance_counters AS lu ON db.name = lu.instance_name
INNER JOIN sys.dm_os_performance_counters AS ls ON db.name = ls.instance_name
WHERE lu.counter_name LIKE 'Log File(s) Used Size (KB)%' AND
ls.counter_name LIKE 'Log File(s) Size (KB)%' ;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07