R语言典型相关分析
1 关键点:典型相关分析
典型相关分析是用于分析两组随机变量之间的相关程度的一种统计方法,它能够有效地揭示两组随机变量之间的相互(线性依赖)关系
例如 研究生入学考试成绩与本科阶段一些主要课程成绩的相关性
将研究两组变量的相关性问题转化为研究两个变量的相关性问题 此类相关为典型相关#
2 分类:
总体典型相关
样本典型相关
3 R语言提供的计算函数:
典型相关计算 cancor(x,y,xcenter=TRUE,ycenter=TRUE)
x,y是相应的数据矩阵 xcenter,ycenter是逻辑变量 TRUE是将数据中心化 FALSE是不中心化
4 分析结果含义
cor是典型相关系数
xcoef是对应于数据x的系数 又称关于数据x的典型载荷即样本典型变量U系数矩阵A的转置
xcenter是数据X的中心 即数据X的样本均值
y是对应于数据x的系数 又称关于数据y的典型载荷即样本典型变量V系数矩阵B的转置
ycenter是数据Y的中心 即数据Y的样本均值
5 分析步骤
(1.)载入原始数据 data.frame
(2.)原始数据标准化 scale
(3.)典型相关分析 cancor
(4.)相关系数显著性检验 corcoef.test.R
I.典型相关分析的计算
现对20名中年人测得三个生理指标:体重(X1) 腰围(X2) 脉搏(X3);三个训练指标:引体向上(Y1) 起座次数(Y2) 跳跃次数(Y3) 试分析这组数据的相关性
#用数据框的形式输入数据矩阵
test<-data.frame(
X1=c(191, 193, 189, 211, 176, 169, 154, 193, 176, 156,
189, 162, 182, 167, 154, 166, 247, 202, 157, 138),
X2=c(36, 38, 35, 38, 31, 34, 34, 36, 37, 33,
37, 35, 36, 34, 33, 33, 46, 37, 32, 33),
X3=c(50, 58, 46, 56, 74, 50, 64, 46, 54, 54,
52, 62, 56, 60, 56, 52, 50, 62, 52, 68),
Y1=c( 5, 12, 13, 8, 15, 17, 14, 6, 4, 15,
2, 12, 4, 6, 17, 13, 1, 12, 11, 2),
Y2=c(162, 101, 155, 101, 200, 120, 215, 70, 60, 225,
110, 105, 101, 125, 251, 210, 50, 210, 230, 110),
Y3=c(60, 101, 58, 38, 40, 38, 105, 31, 25, 73,
60, 37, 42, 40, 250, 115, 50, 120, 80, 43)
)
#为了消除数量级的影响 将数据标准化处理 调用scale函数
test<-scale(test)
#对标准化的数据做典型相关分析
ca<-cancor(test[,1:3],test[,4:6])
#查看分析结果
ca
结果说明:
1) cor给出了典型相关系数;xcoef是对应于数据X的系数, 即为关于数据X的典型载荷; ycoef为关于数据Y的典型载荷;xcenter与$ycenter是数据X与Y的中心, 即样本均值;
2) 对于该问题, 第一对典型变量的表达式为
U1 = -0.17788841x1 + 0.36232695x2 - 0.01356309x3
U2 = -0.43230348x1 + 0.27085764x2 - 0.05301954x3
U3 = -0.04381432x1 + 0.11608883x2 + 0.24106633x3
V1 = -0.08018009y1 - 0.24180670y2 + 0.16435956y3
V2 = -0.08615561y1 + 0.02833066y2 + 0.24367781y3
V3 = -0.29745900y1 + 0.28373986y2 - 0.09608099y3
相应的相关系数为:p(U1,V1)=0.79560815 ,p(U2,V2)=0.20055604 ,p(U3,V3)=0.07257029
可以进行典型相关系数的显著性检验, 经检验也只有第一组典型变量.
下面计算样本数据在典型变量下的得分:
#计算数据在典型变量下的得分 U=AX V=BY
U<-as.matrix(test[, 1:3])%*% ca$xcoef ; U
V<-as.matrix(test[, 4:6])%*% ca$ycoef ; V
#调整图形
opar <- par(mfrow = c(1, 1),mar = c(5,4,1,1))
#画出以相关变量U1、V1和U3、V3为坐标的数据散点图
plot(U[,1], V[,1], xlab="U1", ylab="V1")
plot(U[,3], V[,3], xlab="U3", ylab="V3")
#调整图形
par(opar)
由散点图可知 第一典型相关变量分布在一条直线附近;第三典型相关变量数据很分散。因为第一典型变量其相关系数为0.79560815,接近1,所以在一直线附近;第三典型变量的相关系数是0.07257029,接近于0,所以很分散。
II.典型相关系数的显著性检验
作为相关分析的目的 就是选择多少对典型变量?因此需要做典型相关系数的显著性检验。若认为相关系数k为0 就没有必要考虑第k对典型变量了
#相关系数检验R程序
corcoef.test<-function(r, n, p, q, alpha=0.1){
#r为相关系数 n为样本个数 且n>p+q
m<-length(r); Q<-rep(0, m); lambda <- 1
for (k in m:1){
#检验统计量
lambda<-lambda*(1-r[k]^2);
#检验统计量取对数
Q[k]<- -log(lambda)
}
s<-0; i<-m
for (k in 1:m){
#统计量
Q[k]<- (n-k+1-1/2*(p+q+3)+s)*Q[k]
chi<-1-pchisq(Q[k], (p-k+1)*(q-k+1))
if (chi>alpha){
i<-k-1; break
}
s<-s+1/r[k]^2
}
#显示输出结果 选用第几对典型变量
i
}
source("corcoef.test.R")
#输入相关系数r,样本个数n,两个随机向量的维数p和q,置信水平a(缺省值为0.1)
corcoef.test(r=ca$cor,n=20,p=3,q=3)
#程序输出值为典型变量的对数
最终程序运行结果显示选择第一对典型相关变量。我们只利用第一典型变量分析问题,达到降维的目的。
write.csv(test,"test_test.csv")
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16