
# Apriori算法实现关联规则挖掘
#======================= MODEL1. 输入数据集为transaction类型 ======================
#install.packages("arules") #Apriori算法程序包
library(arules)
data(Groceries) #调用R自带关联规则数据集Groceries(transaction类型的格式)
#-----------------------查看数据的详细信息
# Groceries数据集为杂货店一个月的交易记录集,包括169中商品项目,9835个记录
head(Groceries) #查看前6条记录
str(Groceries) #查看数据的内部结构
summary(Groceries) #查看数据的基本统计量
class(Groceries) #查看数据类型,关联规则处理的数据类型为“transactions”
dim(Groceries) #查看数据的维数 行数和列数
colnames(Groceries[,1:5]) #查看第1-5列的列名
#inspect(Groceries) #查看transactions数据集中的全部记录
#--------------------- Apriori实现关联规则
# apriori的参数设置为支持度0.01,置信度0.1,关联前项和后项包含的最小项目数为2,最大项数为15
rules=apriori(Groceries, parameter=list(support=0.01,confidence=0.1,minlen=2,maxlen=15))
# 如果需要了解某一种商品的关联情况,可以使用appearance参数,以下为探究与whole milk关联的商品,设置关联前项为whole milk,后项不限
# rules=apriori(Groceries,
parameter=list(support=0.01,confidence=0.1,minlen=2),appearance=list(lhs="whole
milk",default="rhs"))
rules #查看生成的关联规则
rules<-sort(rules,by='support') #对规则按照support从高到低排序
inspect(rules[1:10]) #查看前10条规则
# 对规则进行格式转换并输出
R1<-as(rules,'data.frame') #将关联规则设置成dataframe格式
#setwd("D:\\R files\\Data")
write.csv(R1,"Groceries_apriori.csv")
#-------------------- 关联规则可视化
#install.packages("arulesViz") #关联规则可视化程序包
library ( arulesViz )
plot(rules, measure = c("support", "lift"), shading = "confidence") #画出关联结果的散点图
plot(rules,method="grouped") #作出rules的分组图
# 绘制Two‐key图,其中关联规则点的颜色深浅表示其所代表的关联规则中所含商品的多少,商品种类越多,点的颜色越深
plot(rules,shading="order", control=list(main="Two‐key plot"))
#========================== MODEL2. 输入数据集为稀疏矩阵 ===========================
#setwd("D:\\R files\\Data")
# 若输入矩阵为其他形式,可转换,将其变成稀疏矩阵
# 数据集testA为简单的输入稀疏矩阵,7个项目和9条记录
testA=read.csv(file="testA.csv",as.is = T,sep=",") #读入稀疏矩阵
set<-testA
factorK<-function(X){factor(X,levels=0:1)} #建立factorK函数
T1<-as(data.frame(apply(set,2,factorK)),"transactions") #根据列对应的值是否为1建立transaction格式的数据集
T2<-apriori(T1,parameter=list(minlen=2,supp=0.3,conf=0.5)) #得到支持度0.1,置信度0.5的关联规则
T2<-sort(T2,by='support') #将关联规则按支持度从高到低排序
inspect(T2[1:10])
# 对规则进行格式转换
T3<-as(T2,'data.frame') #将关联规则设置成dataframe格式
# 画图
library ( arulesViz )
plot(T2, measure = c("support", "lift"), shading = "confidence") #画出关联结果的散点图
plot(T2,method="grouped") #作出分组图
# 绘制Two‐key图,其中关联规则点的颜色深浅表示其所代表的关联规则中所含商品的多少,商品种类越多,点的颜色越深
plot(T2,shading="order", control=list(main="Two‐key plot"))
# 将关联规则转换格式输出
#setwd("D:\\R files\\Data")
write.csv(T3,"testA_apriori.csv")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26