# Apriori算法实现关联规则挖掘
#======================= MODEL1. 输入数据集为transaction类型 ======================
#install.packages("arules") #Apriori算法程序包
library(arules)
data(Groceries) #调用R自带关联规则数据集Groceries(transaction类型的格式)
#-----------------------查看数据的详细信息
# Groceries数据集为杂货店一个月的交易记录集,包括169中商品项目,9835个记录
head(Groceries) #查看前6条记录
str(Groceries) #查看数据的内部结构
summary(Groceries) #查看数据的基本统计量
class(Groceries) #查看数据类型,关联规则处理的数据类型为“transactions”
dim(Groceries) #查看数据的维数 行数和列数
colnames(Groceries[,1:5]) #查看第1-5列的列名
#inspect(Groceries) #查看transactions数据集中的全部记录
#--------------------- Apriori实现关联规则
# apriori的参数设置为支持度0.01,置信度0.1,关联前项和后项包含的最小项目数为2,最大项数为15
rules=apriori(Groceries, parameter=list(support=0.01,confidence=0.1,minlen=2,maxlen=15))
# 如果需要了解某一种商品的关联情况,可以使用appearance参数,以下为探究与whole milk关联的商品,设置关联前项为whole milk,后项不限
# rules=apriori(Groceries,
parameter=list(support=0.01,confidence=0.1,minlen=2),appearance=list(lhs="whole
milk",default="rhs"))
rules #查看生成的关联规则
rules<-sort(rules,by='support') #对规则按照support从高到低排序
inspect(rules[1:10]) #查看前10条规则
# 对规则进行格式转换并输出
R1<-as(rules,'data.frame') #将关联规则设置成dataframe格式
#setwd("D:\\R files\\Data")
write.csv(R1,"Groceries_apriori.csv")
#-------------------- 关联规则可视化
#install.packages("arulesViz") #关联规则可视化程序包
library ( arulesViz )
plot(rules, measure = c("support", "lift"), shading = "confidence") #画出关联结果的散点图
plot(rules,method="grouped") #作出rules的分组图
# 绘制Two‐key图,其中关联规则点的颜色深浅表示其所代表的关联规则中所含商品的多少,商品种类越多,点的颜色越深
plot(rules,shading="order", control=list(main="Two‐key plot"))
#========================== MODEL2. 输入数据集为稀疏矩阵 ===========================
#setwd("D:\\R files\\Data")
# 若输入矩阵为其他形式,可转换,将其变成稀疏矩阵
# 数据集testA为简单的输入稀疏矩阵,7个项目和9条记录
testA=read.csv(file="testA.csv",as.is = T,sep=",") #读入稀疏矩阵
set<-testA
factorK<-function(X){factor(X,levels=0:1)} #建立factorK函数
T1<-as(data.frame(apply(set,2,factorK)),"transactions") #根据列对应的值是否为1建立transaction格式的数据集
T2<-apriori(T1,parameter=list(minlen=2,supp=0.3,conf=0.5)) #得到支持度0.1,置信度0.5的关联规则
T2<-sort(T2,by='support') #将关联规则按支持度从高到低排序
inspect(T2[1:10])
# 对规则进行格式转换
T3<-as(T2,'data.frame') #将关联规则设置成dataframe格式
# 画图
library ( arulesViz )
plot(T2, measure = c("support", "lift"), shading = "confidence") #画出关联结果的散点图
plot(T2,method="grouped") #作出分组图
# 绘制Two‐key图,其中关联规则点的颜色深浅表示其所代表的关联规则中所含商品的多少,商品种类越多,点的颜色越深
plot(T2,shading="order", control=list(main="Two‐key plot"))
# 将关联规则转换格式输出
#setwd("D:\\R files\\Data")
write.csv(T3,"testA_apriori.csv")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04