R语言t检验
I.单样本t检验
例1. 有原始数据的t检验
已知某水样中含碳酸钙的真值为20.7mg/L,现用某法重复测定该水样12次,碳酸钙的含量分别为..问该法测定碳酸钙含量所得的均值与诊治有无显著差异?
x <- c(20.99,20.41,20.10,20.00,20.91,22.60,20.99,20.42,20.90,22.99,23.12,20.89)
t.test(x, alternative = "greater", mu = 20.7 )
检验结果为t=1.5665,显著性P值=0.07276>0.05,接受原假设,说明该法测定的碳酸钙含量与总体无显著差异。
例2. 无原始数据的t检验
健康成年男子脉搏均数为72次/分。某医生在某山区随机抽查健康成年男子25人,其脉搏均数为74.2次/分,标准差为6.5次/分。根据这个资料能否认为某山区健康成年男子脉搏数与一般健康成年男子的不同?
#根据公式算出t值
x <- 74.2
mu <- 72
thita <- 6.5
n <- 25
t <- (x-mu) / (thita/sqrt(n)) #或者用n-1代替n
t
#用pt()函数,输入t值和自由度df(n-1),得到p值
p <- pt(t,df=24)
p
检验结果为t=1.692308,显著性P值=0.9482341>0.05,接受原假设,说明该法测定的成年男子脉搏数与总体无显著差异,认为某山区健康成年男子脉搏数与一般健康成年男子的相同。
II.配对样本t检验
上面介绍的是已知总体均数时的显著性检验方法,但有时我们并不知道总体均数,且医学数据资料中更为常见的是成对资料,若一批某病病人治疗前有某项测定记录,治疗后再次测定以观察疗效,这样,观察n例就有n对数据,这即是成对资料。如果有两种处理要比较,将每一份标本分成两份各接受一种处理,这样观察到的一批数据也是成对资料。医学科研中有时无法对同一批对象进行前后或对应观察,而只得将病人配成对子,尽量使同对中的两者在性别、年龄或其他可能会影响处理效果的各种条件方面相似,然后进行处理,在观察反应,这样获得的许多对不可拆散的数据同样是成对资料。由于成对资料可控制个体差异使之较小,故检验效率是较高的。
在医学研究中,常用配对设计。配对设计主要有4种情况:同一受试对象处理前后的数据,同一受试对象两个部位的数据,同一样品用两种方法检验的结果,配对的两个受试对象分别接受两种处理后的数据。
例1. 有原始数据的配对t检验
判断简便法和常规法测定尿铅含量的差别有无统计意义,对12份人尿同时用两种方法进行测定,所得结果如下表所示,请分析两种测定方法的测量结果是否不同?
#输入两组值
x <- c(2.41,2.90,2.75,2.23,3.67,4.49,5.16,5.45,2.06,1.64,1.06,0.77)
y <- c(2.80,3.04,1.88,3.43,3.81,4.00,4.44,5.41,1.24,1.83,1.45,0.92)
#配对样本t检验
t.test(x,y,paired=T)
配对t检验的结果为:t=0.16232,显著性p值=0.874>0.05,不能拒绝原假设H0,说明不能认为两种方法测定尿铅含量的结果不相同。
例2. 无原始数据的配对t检验
慢性支气管炎病人血中胆碱酯酶活性常常偏高。某校药理教研室将同性别同年龄的病人与健康人配成8对,测量该值加以比较,配对两组人差值的均值为0.625,标准差为0.78,问可否通过这一资料得出较明确的结论?
#依次输入配对样本的差值d、标准差s、配对数n
d <- 0.625;s <- 0.78;n <- 8
#算t值
t <- d / (s/sqrt(n))
#输入自由度n-1,pt()函数得到p值
df <- n-1
p <- pt(t,df)
t;p
p值为0.9711069>0.05,不能拒绝原假设,不能认为慢性支气管炎病人与健康人血中胆碱酯酶活性不同。
III.两独立样本t检验
在日常工作中,我们经常要比较两组计量资料的均数间有无显著差别,如研究不同疗法的降压效果或两种不同制剂对杀灭鼠体内钩虫的效果等。假若事先难以找到年龄、性别等条件完全一样的人(或动物)作配对比较,那么就不能求每对的差数,而只能先算出各组的均数,然后进行比较。两组例数可以相等,也可以稍有出入。检验的方法同样是先假定两组相应的总体均数相等,看两组均数实际相差与此假设是否靠近,近则把相差看成抽样误差表现,远到一定界限则认为由抽样误差造成这样大的相差的可能性实在太小,拒绝假设而接受H1,作出两总体不相等的结论。
成组设计资料的t检验与单样本t检验和配对t检验情况不同,以上两种情况最终都可将待分析的变量转化为一个,并属于同一个组(即不涉及分组变量)。而成组资料虽然分析的是同一个变量,但要设计不同组之间变量的比较,对两组数据的均数进行差别比较的t检验。
两个小样本均数比较的t检验有以下应用条件:
1.两样本来自的总体均符合正态分布,两样本来自的总体方差齐性。故在进行两小样本均数比较的t检验之前,要用方差齐性检验来推断两样本代表的总体方差是否相等,方差齐性检验的方法使用F检验,其原理是看较大样本方差与较小样本方差的商是否接近1。若接近1,则可认为两样本代表的总体方差齐性。判断两样本来自的总体是否符合正态分布,可用正态性检验的方法。
2.若两样本来自的总体方差不齐,也不符合正态分布,对符合对数正态分布的资料可以用其集合均数进行t检验,对其他资料可以用t检验或秩和检验进行分析。
例1. 有原始数据的独立两样本t检验
有两组雌鼠,分别饲以高蛋白和低蛋白饲料,8周后记录各鼠体重增加量如下,问两组动物增重的均数差别是否显著?
高蛋白组 134 146 104 119 124 161 107 83 113 129 97 123
低蛋白组 70 118 101 85 107 132 94
high <- c(134, 146, 104, 119, 124, 161, 107, 83, 113, 129, 97, 123)
low <- c(70, 118, 101, 85, 107, 132, 94)
#方差齐次性检验
x <- c(134, 146, 104, 119, 124, 161, 107, 83, 113, 129, 97, 123,70, 118, 101, 85, 107, 132, 94)
a <- factor(c(rep(1,12),rep(2,7)))
#bartlett.test方差齐性检验
bartlett.test(x~a)
#var.test方差齐性检验
var.test(x~a)
#levene.test方差齐性检验(也是SPSS的默认方差齐性检验方法)
library(car)
levene.test(x~a)
#前两者是对原始数据的方差进行检验的,leveneTest是对方差模型的残差进行组间齐性检验.一般认为是要求残差的方差齐,所以一般的统计软件都做的是leveneTest
#t检验
t.test(high,low,paired = FALSE)
1.方差齐次性检验,取var.test方差齐性检验的结果,F = 1.0755,p-value = 0.9788>0.05,说明两独立样本数据方差齐性
2.我们关注的是上表中方差“等于”对应的t值,t=1.89,p值0.0757>0.05,不拒绝原假设,不能认为两组雌鼠体重增加量不相等
例2. 无原始数据的度量两样本t检验
测量某两个地区水中碳酸钙的含量,分别从两个地区随机抽取20份样品进行碳酸钙检测,分别得到两个地区碳酸钙含量的均数和标准差,结果见下图。试判断两个地区水中碳酸钙的含量是否有差异?
#输入对照组实验组均值x1,x2;组数n1,n2;方差s1,s2
x1<-20.95; x2<-21.79; n1<-20; n2<-20; s1<-5.89; s2<-3.43
#计算两独立样本共同的标准差
sc <- sqrt((1/n1+1/n2)*((n1-1)*s1**2+(n2-1)*s2**2)/(n1+n2-2))
#t值,自由度df,p值
t <- (x2-x1)/sc
df <- n1+n2-2
p <- pt(t,df)
t;p
t=0.5511486,p值0.7076209>0.05,不拒绝原假设,不能认为两个地区水中碳酸钙的含量有差异
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20