
R语言与显著性检验学习笔记
一、何为显著性检验
显著性检验的思想十分的简单,就是认为小概率事件不可能发生。虽然概率论中我们一直强调小概率事件必然发生,但显著性检验还是相信了小概率事件在我做的这一次检验中没有发生。
显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设),与H0对立的假设记作H1,称为备择假设。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;
⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。这样的假设检验又称为显著性检验,概率α称为显著性水平。
我们常用的显著性检验有t检验,卡方检验,相关性检验等,在做这一些检验时,有什么需要注意的呢?
二、正态性与P值
t检验,卡方检验,相关性检验中的pearson方法都是建立在正态样本的假设下的,所以在假设检验开始时,一般都会做正态性分析。在R中可以使用shapiro.test()。来作正态性检验。当然在norm.test包中还提供了许多其他的方法供我们选择。
P值是可以拒绝原假设的最小水平值。
三、四个重要的量
综合前面的叙述,我们知道研究显著性检验有四个十分重要的量:样本大小,显著性水平,功效,效应值。
样本大小:这个显然,样本越多,对样本的把握显然越准确,但是鉴于我们不可能拥有无限制的样本,那么多少个样本可以达到要求?今天的分享中我们可以通过R来找到答案。
显著性水平:犯第一类错误的概率,这个在做检验前我们会提前约定,最后根据P值来决定取舍。
功效:这个是在显著性检验中一般不提及但实际十分有用的量。它衡量真实事件发生的概率。也就是说功效越大,第二类错误越不可能发生。虽然显著性假设检验不提及它,但衡量假设检验的好坏的重要指标便是两类错误尽可能小。
效应值:备择假设下效应的量
四、用pwr包做功效分析
Pwr包中提供了以下函数:
下面我们来介绍以上一些函数的用法。
1、 t检验
调用格式:
pwr.t.test(n = NULL, d = NULL, sig.level =0.05, power = NULL, type =c("two.sample", "one.sample", "paired"),alternative = c("two.sided", "less","greater"))
参数说明:
N:样本大小
D:t检验的统计量
Sig.level:显著性水平
Power:功效水平
Type:检验类型,这里默认是两样本,且样本量相同
Alternative:统计检验是双侧还是单侧,这里默认为双侧
举例说明:已知样本量为60,单一样本t检验的统计量的值为0.2(这个可以通过t.test(data)$statistic取出来),显著水平α=0.1,那么功效是多少呢?
R中输入命令:
得到结果:
One-sample t test power calculation
n = 60
d = 0.2
sig.level = 0.1
power = 0.4555818
alternative = two.sided
我们可以看到,犯第二类错误的概率在50%以上,我们应该相信这个结果吗(无论根据P值来看是拒绝还是接受)?显然不行,那么需要多少个样本才能把第二类错误降低到10%呢?
在R中输入:
pwr.t.test(d=0.2,power=0.9,sig.level=0.10,type="one.sample",alternative="two.sided")
得到结果:
One-sample t test power calculation
n = 215.4542
d = 0.2
sig.level = 0.1
power = 0.9
alternative = two.sided
也就是说216个样本才可以得到满意的结果,使得第二类错误概率不超过0.1.
对于两样本而言是类似的,我们不在赘述,我们下面再介绍另一种t检验的情况:两样本不相等。
调用格式:
pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL,sig.level = 0.05, power = NULL, alternative = c("two.sided","less","greater"))
参数说明:
n1 Numberof observations in the first sample
n2 Numberof observations in the second sample
d Effectsize
sig.level Significancelevel (Type I error probability)
power Powerof test (1 minus Type II error probability)
alternative acharacter string specifying the alternative hypothesis, must be one of"two.sided" (default), "greater" or "less"
例如:两个样本量为90,60,统计量为0.6,单侧t检验,α=0.05,为望大指标。
R中的命令:
输出结果:
t test power calculation
n1 = 90
n2 = 60
d = 0.6
sig.level = 0.05
power = 0.9737262
alternative = greater
可以看出功效十分大,且α=0.05,我们相信这次检验的结论很可信。
2、 相关性
Pwr.r.test()函数对相关性分析进行功效分析。格式如下:
pwr.r.test(n = NULL, r = NULL, sig.level = 0.05, power = NULL, alternative = c("two.sided", "less","greater"))
这里和t检验不同的是r是线性相关系数,可以通过cor(data1,data2)获取,但需要注意的是不要输入spearman,kendall相关系数,他们是衡量等级相关的。
假定我们研究抑郁与孤独的关系,我们的原假设和备择假设为:
H0:r<0.25 v.s. H1:r>0.25
假定显著水平为0.05,原假设不真,我们想有90%的信心拒绝H0,需要观测多少呢?
下面的代码给出答案:
pwr.r.test(r=0.25,sig.level=0.05,power=0.9,alt="greater")
approximate correlation power calculation (arctangh transformation)
n = 133.8325
r = 0.25
sig.level = 0.05
power = 0.9
alternative = greater
易见,需要样本134个
3、 卡方检验
原假设为变量之间独立,备择假设为变量不独立。命令为pwr.chisq.test(),调用格式:
pwr.chisq.test(w = NULL, N = NULL, df = NULL, sig.level = 0.05, power = NULL)其中w为效应值,可以通过ES.w2计算出来,df为列联表自由度
举例:
输出结果:
Chi squared power calculation
w = 0.2558646
N = 200
df = 3
sig.level = 0.05
power = 0.8733222
NOTE: N is the number of observations
也就是说,这个观测下反第二类错误的概率在13%左右,结果较为可信。
在R中还有不少与功效分析有关的包,我们不加介绍的把它们列举如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08