R语言与函数估计学习笔记(函数展开)
函数估计
说到函数的估计我们可以肯定的一点是我们很难得到原模型的函数,不过我们可以找到一个不坏的函数去逼近它,所以我们的函数估计从函数展开开始说起。
函数展开
Taylor展开
首先不得不提的就是大名鼎鼎的Taylor展开,它告诉我们一个光滑的函数在x=t的一个邻域内有Taylor展式
它给我们的一个重要启示就是我们可以把我们感兴趣的函数拆解成若干个简单函数q0(x),q1(x)⋯,的线性组合。
那么还剩一个问题,就是qj(x)选什么。当然一个简单的选择就是qj(x)=xj,或者我们取t=x¯,qj(x)=(x−x¯)j。我们来看看这组函数基qj(x)=xj对标准正态密度函数的估计效果
x <- seq(-3, 3, by = 0.1)
y <- dnorm(x)
model <- lm(y ~ poly(x, 2))
plot(y, type = "l")
lines(fitted(model), col = 2)
summary(model)
##
## Call:
## lm(formula = y ~ poly(x, 2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.07901 -0.06035 -0.00363 0.05864 0.10760
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.64e-01 8.09e-03 20.2 <2e-16 ***
## poly(x, 2)1 -1.77e-16 6.32e-02 0.0 1
## poly(x, 2)2 -9.79e-01 6.32e-02 -15.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0632 on 58 degrees of freedom
## Multiple R-squared: 0.805, Adjusted R-squared: 0.799
## F-statistic: 120 on 2 and 58 DF, p-value: <2e-16
从图像上来看,这个拟合不是很好,我们可以认为是p较小造成的,一个解决办法就是提高p的阶数,令p=10我们可以试试:
model1 <- lm(y ~ poly(x, 10))
x <- seq(-3, 3, by = 0.1)
y <- dnorm(x)
model <- lm(y ~ poly(x, 2))
plot(y, type = "l")
lines(fitted(model), col = 2)
lines(fitted(model1), col = 3)
summary(model1)
##
## Call:
## lm(formula = y ~ poly(x, 10))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.86e-04 -2.03e-04 1.45e-05 1.83e-04 2.83e-04
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.64e-01 2.94e-05 5572.4 <2e-16 ***
## poly(x, 10)1 -1.92e-16 2.29e-04 0.0 1
## poly(x, 10)2 -9.79e-01 2.29e-04 -4268.8 <2e-16 ***
## poly(x, 10)3 2.36e-16 2.29e-04 0.0 1
## poly(x, 10)4 4.54e-01 2.29e-04 1979.0 <2e-16 ***
## poly(x, 10)5 -1.65e-16 2.29e-04 0.0 1
## poly(x, 10)6 -1.54e-01 2.29e-04 -672.4 <2e-16 ***
## poly(x, 10)7 1.67e-17 2.29e-04 0.0 1
## poly(x, 10)8 4.09e-02 2.29e-04 178.5 <2e-16 ***
## poly(x, 10)9 2.07e-16 2.29e-04 0.0 1
## poly(x, 10)10 -8.85e-03 2.29e-04 -38.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.000229 on 50 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.26e+06 on 10 and 50 DF, p-value: <2e-16
从上图看到,拟合效果好了不少,这样看上去我们只需要提高基函数阶数就可以解决拟合优度的问题了。但是注意到随着阶数提高,可能出现设计阵降秩的情形,也有可能出现复共线性,这是我们不希望看到的。为了解决第一个问题,我们的做法是限制p的最大取值,如将p限制在5以下;对于第二个问题,我们的做法便是采用正交多项式基。
正交多项式展开
正交多项式的相关定义可以参阅wiki,这里就不在啰嗦了,我们这里列出Legendre多项式基与Hermite多项式基。
其中Legendre多项式基已经在wiki中给出了,其取值范围是[-1,1],权函数是1,表达式为:
Legendre多项式基的递归表达式可以表达为:
我们这里来看一个例子,假设真实模型为y=5xcos(5πx),我们一共做了10次试验,得到了10个观测,现在我们要找一个拟模型来近似这个真实模型。我们来看看多项式基的效果:
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
A <- data.frame(x = seq(-1, 1, length = 1000))
model.linear <- lm(y ~ poly(x, 6))
lines(seq(-1, 1, length = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, length = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- x
z[, 2] <- (3 * x^2 - 1)/2
z[, 3] <- (5 * x^3 - 3 * x)/2
z[, 4] <- (35 * x^4 - 30 * x^2 + 3)/8
z[, 5] <- (2 * 5 - 1)/5 * x * z[, 4] - 0.8 * z[, 3]
z[, 6] <- (2 * 6 - 1)/6 * x * z[, 5] - 5/6 * z[, 4]
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- x
z[, 2] <- (3 * x^2 - 1)/2
z[, 3] <- (5 * x^3 - 3 * x)/2
z[, 4] <- (35 * x^4 - 30 * x^2 + 3)/8
z[, 5] <- (2 * 5 - 1)/5 * x * z[, 4] - 0.8 * z[, 3]
z[, 6] <- (2 * 6 - 1)/6 * x * z[, 5] - 5/6 * z[, 4]
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "6 order poly-reg", "9 order poly-reg", "6 order orth-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
Fourier展开
这里我们就可以看到,多项式拟合对于这种含周期的问题的解决效果是很不好的,正交多项式完全不行,可见问题并不是出在复共线性上,对于含周期的函数的逼近我们可以引入Fourier基:
我们来看看拟合效果:
x <- seq(-1, 1, length = 10)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1, ylim = c(-15.5, 15.5))
points(x, y)
model.linear <- lm(y ~ poly(x, 7))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, len = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "7 order poly-reg", "9 order poly-reg", "Fourier-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
可见Fourier基对周期函数的拟合还是很好的。但是这必须是不含趋势的结果,含趋势的只能在局部有个不错的拟合,如果我们把上面的模型换为5x+cos(5πx),可以看到Fourier基拟合的效果是十分糟糕的。
x <- seq(-1, 1, length = 10)
y <- 5 * x + cos(5 * pi * x)
f <- function(x) 5 * x + cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
model.linear <- lm(y ~ poly(x, 7))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, len = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "7 order poly-reg", "9 order poly-reg", "Fourier-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
样条基展开
有些时候我们对全局的拟合是有缺陷的,所以可以进行分段的拟合,一旦确定了分段的临界点,我们就可以进行局部的回归,样条基本上就借鉴了这样一个思想。
为了增加局部的拟合优度,我们在原来的函数基1,x,x2,⋯,xp上加上其中,knot表示节点,函数(x−knoti)+表示函数(x−knoti)取值为正时取函数值,否则取0.
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
model.reg <- lm(y ~ poly(x, 5))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.reg, A), col = 2)
ndat <- length(x)
knots <- seq(-1, 1, length = 10)
f <- function(x, y) ifelse(y > x, (y - x)^3, 0)
X <- matrix(rep(NA, length(x) * (3 + length(knots))), length(x), (3 + length(knots)))
for (i in 1:3) X[, i] <- x^i
for (i in 4:(length(knots) + 3)) X[, i] <- f(knots[(i - 3)], x)
model.cubic <- lm(y ~ X)
x <- seq(-1, 1, length = 1000)
X <- matrix(rep(NA, length(x) * (3 + length(knots))), length(x), (3 + length(knots)))
for (i in 1:3) X[, i] <- x^i
for (i in 4:(length(knots) + 3)) X[, i] <- f(knots[(i - 3)], x)
A <- as.data.frame(X)
lines(seq(-1, 1, len = 1000), predict(model.cubic, A), col = 3)
从上图中我们可以看到加上样条基后,拟合效果瞬间提高了不少,三阶样条基就可以匹敌5~6阶的多项式基了。R中的splines包中提供了polyspline函数,来做样条拟合,我们可以看看在这个例子中它几乎就是原函数的“复制”。
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
library(splines)
model <- polySpline(interpSpline(y ~ x))
# print(model)
plot(model, col = 2)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1, ylim = c(-15.5, 15.5), add = T)
points(x, y)
本节的最后,我们最后来看看函数展开的相关内容,如果说我们已经知道了函数f(x)的表达式,想求解一个近似的函数展开式的系数,我们只需要将f(x)拆解为f(x)=g(x)p(x),其中p(x)为密度函数,那么展开式系数可以近似的表示为其中x1,⋯,xn是由p(x)产生的随机数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29