R语言与函数估计学习笔记(函数展开)
函数估计
说到函数的估计我们可以肯定的一点是我们很难得到原模型的函数,不过我们可以找到一个不坏的函数去逼近它,所以我们的函数估计从函数展开开始说起。
函数展开
Taylor展开
首先不得不提的就是大名鼎鼎的Taylor展开,它告诉我们一个光滑的函数在x=t的一个邻域内有Taylor展式
它给我们的一个重要启示就是我们可以把我们感兴趣的函数拆解成若干个简单函数q0(x),q1(x)⋯,的线性组合。
那么还剩一个问题,就是qj(x)选什么。当然一个简单的选择就是qj(x)=xj,或者我们取t=x¯,qj(x)=(x−x¯)j。我们来看看这组函数基qj(x)=xj对标准正态密度函数的估计效果
x <- seq(-3, 3, by = 0.1)
y <- dnorm(x)
model <- lm(y ~ poly(x, 2))
plot(y, type = "l")
lines(fitted(model), col = 2)
summary(model)
##
## Call:
## lm(formula = y ~ poly(x, 2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.07901 -0.06035 -0.00363 0.05864 0.10760
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.64e-01 8.09e-03 20.2 <2e-16 ***
## poly(x, 2)1 -1.77e-16 6.32e-02 0.0 1
## poly(x, 2)2 -9.79e-01 6.32e-02 -15.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0632 on 58 degrees of freedom
## Multiple R-squared: 0.805, Adjusted R-squared: 0.799
## F-statistic: 120 on 2 and 58 DF, p-value: <2e-16
从图像上来看,这个拟合不是很好,我们可以认为是p较小造成的,一个解决办法就是提高p的阶数,令p=10我们可以试试:
model1 <- lm(y ~ poly(x, 10))
x <- seq(-3, 3, by = 0.1)
y <- dnorm(x)
model <- lm(y ~ poly(x, 2))
plot(y, type = "l")
lines(fitted(model), col = 2)
lines(fitted(model1), col = 3)
summary(model1)
##
## Call:
## lm(formula = y ~ poly(x, 10))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.86e-04 -2.03e-04 1.45e-05 1.83e-04 2.83e-04
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.64e-01 2.94e-05 5572.4 <2e-16 ***
## poly(x, 10)1 -1.92e-16 2.29e-04 0.0 1
## poly(x, 10)2 -9.79e-01 2.29e-04 -4268.8 <2e-16 ***
## poly(x, 10)3 2.36e-16 2.29e-04 0.0 1
## poly(x, 10)4 4.54e-01 2.29e-04 1979.0 <2e-16 ***
## poly(x, 10)5 -1.65e-16 2.29e-04 0.0 1
## poly(x, 10)6 -1.54e-01 2.29e-04 -672.4 <2e-16 ***
## poly(x, 10)7 1.67e-17 2.29e-04 0.0 1
## poly(x, 10)8 4.09e-02 2.29e-04 178.5 <2e-16 ***
## poly(x, 10)9 2.07e-16 2.29e-04 0.0 1
## poly(x, 10)10 -8.85e-03 2.29e-04 -38.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.000229 on 50 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.26e+06 on 10 and 50 DF, p-value: <2e-16
从上图看到,拟合效果好了不少,这样看上去我们只需要提高基函数阶数就可以解决拟合优度的问题了。但是注意到随着阶数提高,可能出现设计阵降秩的情形,也有可能出现复共线性,这是我们不希望看到的。为了解决第一个问题,我们的做法是限制p的最大取值,如将p限制在5以下;对于第二个问题,我们的做法便是采用正交多项式基。
正交多项式展开
正交多项式的相关定义可以参阅wiki,这里就不在啰嗦了,我们这里列出Legendre多项式基与Hermite多项式基。
其中Legendre多项式基已经在wiki中给出了,其取值范围是[-1,1],权函数是1,表达式为:
Legendre多项式基的递归表达式可以表达为:
我们这里来看一个例子,假设真实模型为y=5xcos(5πx),我们一共做了10次试验,得到了10个观测,现在我们要找一个拟模型来近似这个真实模型。我们来看看多项式基的效果:
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
A <- data.frame(x = seq(-1, 1, length = 1000))
model.linear <- lm(y ~ poly(x, 6))
lines(seq(-1, 1, length = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, length = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- x
z[, 2] <- (3 * x^2 - 1)/2
z[, 3] <- (5 * x^3 - 3 * x)/2
z[, 4] <- (35 * x^4 - 30 * x^2 + 3)/8
z[, 5] <- (2 * 5 - 1)/5 * x * z[, 4] - 0.8 * z[, 3]
z[, 6] <- (2 * 6 - 1)/6 * x * z[, 5] - 5/6 * z[, 4]
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- x
z[, 2] <- (3 * x^2 - 1)/2
z[, 3] <- (5 * x^3 - 3 * x)/2
z[, 4] <- (35 * x^4 - 30 * x^2 + 3)/8
z[, 5] <- (2 * 5 - 1)/5 * x * z[, 4] - 0.8 * z[, 3]
z[, 6] <- (2 * 6 - 1)/6 * x * z[, 5] - 5/6 * z[, 4]
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "6 order poly-reg", "9 order poly-reg", "6 order orth-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
Fourier展开
这里我们就可以看到,多项式拟合对于这种含周期的问题的解决效果是很不好的,正交多项式完全不行,可见问题并不是出在复共线性上,对于含周期的函数的逼近我们可以引入Fourier基:
我们来看看拟合效果:
x <- seq(-1, 1, length = 10)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1, ylim = c(-15.5, 15.5))
points(x, y)
model.linear <- lm(y ~ poly(x, 7))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, len = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "7 order poly-reg", "9 order poly-reg", "Fourier-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
可见Fourier基对周期函数的拟合还是很好的。但是这必须是不含趋势的结果,含趋势的只能在局部有个不错的拟合,如果我们把上面的模型换为5x+cos(5πx),可以看到Fourier基拟合的效果是十分糟糕的。
x <- seq(-1, 1, length = 10)
y <- 5 * x + cos(5 * pi * x)
f <- function(x) 5 * x + cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
model.linear <- lm(y ~ poly(x, 7))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.linear, A), col = 2)
model.linear1 <- lm(y ~ poly(x, 9))
lines(seq(-1, 1, len = 1000), predict(model.linear1, A), col = 3)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
model.linear2 <- lm(y ~ z)
x <- seq(-1, 1, len = 1000)
z <- matrix(rep(NA, 6 * length(x)), length(x), 6)
z[, 1] <- cos(2 * pi * x)
z[, 2] <- sin(2 * pi * x)
z[, 3] <- cos(4 * pi * x)
z[, 4] <- sin(4 * pi * x)
z[, 5] <- cos(6 * pi * x)
z[, 6] <- sin(6 * pi * x)
B <- as.data.frame(z)
lines(x, predict(model.linear2, B), col = 4)
letters <- c("orignal model", "7 order poly-reg", "9 order poly-reg", "Fourier-reg")
legend("bottomright", legend = letters, lty = 1, col = 1:4, cex = 0.5)
样条基展开
有些时候我们对全局的拟合是有缺陷的,所以可以进行分段的拟合,一旦确定了分段的临界点,我们就可以进行局部的回归,样条基本上就借鉴了这样一个思想。
为了增加局部的拟合优度,我们在原来的函数基1,x,x2,⋯,xp上加上其中,knot表示节点,函数(x−knoti)+表示函数(x−knoti)取值为正时取函数值,否则取0.
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1)
points(x, y)
model.reg <- lm(y ~ poly(x, 5))
A <- data.frame(x = seq(-1, 1, length = 1000))
lines(seq(-1, 1, len = 1000), predict(model.reg, A), col = 2)
ndat <- length(x)
knots <- seq(-1, 1, length = 10)
f <- function(x, y) ifelse(y > x, (y - x)^3, 0)
X <- matrix(rep(NA, length(x) * (3 + length(knots))), length(x), (3 + length(knots)))
for (i in 1:3) X[, i] <- x^i
for (i in 4:(length(knots) + 3)) X[, i] <- f(knots[(i - 3)], x)
model.cubic <- lm(y ~ X)
x <- seq(-1, 1, length = 1000)
X <- matrix(rep(NA, length(x) * (3 + length(knots))), length(x), (3 + length(knots)))
for (i in 1:3) X[, i] <- x^i
for (i in 4:(length(knots) + 3)) X[, i] <- f(knots[(i - 3)], x)
A <- as.data.frame(X)
lines(seq(-1, 1, len = 1000), predict(model.cubic, A), col = 3)
从上图中我们可以看到加上样条基后,拟合效果瞬间提高了不少,三阶样条基就可以匹敌5~6阶的多项式基了。R中的splines包中提供了polyspline函数,来做样条拟合,我们可以看看在这个例子中它几乎就是原函数的“复制”。
x <- seq(-1, 1, length = 20)
y <- 5 * x * cos(5 * pi * x)
library(splines)
model <- polySpline(interpSpline(y ~ x))
# print(model)
plot(model, col = 2)
f <- function(x) 5 * x * cos(5 * pi * x)
curve(f, -1, 1, ylim = c(-15.5, 15.5), add = T)
points(x, y)
本节的最后,我们最后来看看函数展开的相关内容,如果说我们已经知道了函数f(x)的表达式,想求解一个近似的函数展开式的系数,我们只需要将f(x)拆解为f(x)=g(x)p(x),其中p(x)为密度函数,那么展开式系数可以近似的表示为其中x1,⋯,xn是由p(x)产生的随机数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30