
优化与求解非线性方程组(单变量问题)
求函数极值的问题通常被化简为求解导数为0的点的问题。所以优化问题通常与解非线性方程组联系起来。在前面写点估计中的mle时,我们介绍了R中求解方程极值的函数nlm(),optim().
我们以一元函数f(x)=ln(x)/(1+x)为例求解函数的极值。
f<-function(x) -log(x)/(1+x) #(1)
optimize(f,c(0,10)) #求解(0,10)上的最小值,对于一元函数区间的确定,我们通常可以画图来做初步判断
对于多元函数:
f <- function(x) sum((x-1:length(x))^2)
nlm(f, c(10,10))#这里需要给出迭代的初值
optim(c(10,10),f)
由于nlm,optim,的默认迭代方法不同,得出的结果精度也会有区别。运行上面的代码,我们可以看到nlm给出的最小值点为(1,2),而optim给出的是(1.000348, 2.001812)。
我们也可以通过求解函数的导数为0的点求解函数的极值。还是以1式为例。运行下面的代码:
D(expression(log(x)/(1+x)),"x")
结果为:1/x/(1 + x) - log(x)/(1 + x)^2。 (2)
对于这样的方程,我们通常是没有好的办法让R给出解析解的。我们可以使用一些数值办法来求解方程(2)的数值解。常用的办法有:二分法,newton法,fisher得分法,不动点迭代法。下面我们来简单介绍算法的思想与R的实现代码。
一、二分法
二分法的思想十分简单,利用的就是函数的中值定理,局限也十分明显,只能求解出一个根而且速度较慢。所以函数的单调性,作图都是解决第一个局限的办法。
给出方程(1)的极小值利用二分法的求解程序:
fzero<-function(f,a,b,eps=1e-6){注:跟踪导函数值为0来检测收敛情况是诱人的,但是存在不稳定性,利用绝对收敛准则解决了这一问题(当然用相对收敛准则也是可以的)
二、Newton法
Newton-rapshon迭代是一种快速求根方法。主要利用泰勒级数展开来解决问题。
利用0=g’(x)=g’(x(t))+g’’(x(t))(x-x(t))(后面的等式是近似成立)来近似g’(x)。解上述的这个方程,我们可以得到一个很好的线性近似,迭代方程为:
X(t+1)=x(t)+g’(x(t))/g’’(x(t))
收敛条件依然使用绝对收敛。对于方程(1),有:
> D(expression(log(x)/(1+x)),"x")
1/x/(1 + x) - log(x)/(1 + x)^2
> D(expression(1/x/(1 + x) - log(x)/(1 + x)^2),"x")
-(1/x^2/(1 + x) + 1/x/(1 + x)^2 + (1/x/(1 + x)^2 - log(x) * (2 * (1+ x))/((1 + x)^2)^2))
问题的newton增量为:h(t)=((x(t)+1)(1+1/x(t)-logx(t))/(3+4/x(t)+1/(x(t))^2-2logx(t))
给出方程(1)的极小值利用newton法的求解程序:
三、Fisher得分法
我们知道fisher信息量是对数似然函数的二阶导数的期望的相反数。所以在求解g对应着的mle优化时,使用fisher信息量替换是合理的。这里不再给出程序。
四、切线法
在牛顿法的基础上,我们把导数改为曲线上两点的连线的斜率显然也十分的合理。这便是切线法的基本想法。我们还是给出上面例子的R程序:
f0<-function(x){五、不动点迭代法
除去二分法外,我们所讨论的都是不动点迭代的特例。这里只是简要叙述一下不动点迭代法的原理,并以开篇的例子给出R程序。
不动点定理是一个结果表示函数F在某种特定情况下,至少有一个不动点存在,即至少有一个点x能令函数F(x)=x。在数学中有很多定理能保证函数在一定的条件下必定有一个或更多的不动点,而在这些最基本的定性结果当中存在不动点及其定理被应用的结果具有非常普遍的价值。
ffour<-function(f0,a,eps=1e-6){这里还想说一点的就是关于不动点迭代的条件(百度一下,你就知道),如果不满足的话,需要对导函数前乘上一个系数加以调整,本例中的4*f0(a)+a正是调整刻度的结果。
<pre class="plain" name="code"></pre>
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
全球第一!上交AI智能体炼成Kaggle特级大师登顶OpenAI MLE-bench 编辑:KingHZ 好困 【新智元导读】刚刚,由上海交通大学人 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24