优化与求解非线性方程组(单变量问题)
求函数极值的问题通常被化简为求解导数为0的点的问题。所以优化问题通常与解非线性方程组联系起来。在前面写点估计中的mle时,我们介绍了R中求解方程极值的函数nlm(),optim().
我们以一元函数f(x)=ln(x)/(1+x)为例求解函数的极值。
f<-function(x) -log(x)/(1+x) #(1)
optimize(f,c(0,10)) #求解(0,10)上的最小值,对于一元函数区间的确定,我们通常可以画图来做初步判断
对于多元函数:
f <- function(x) sum((x-1:length(x))^2)
nlm(f, c(10,10))#这里需要给出迭代的初值
optim(c(10,10),f)
由于nlm,optim,的默认迭代方法不同,得出的结果精度也会有区别。运行上面的代码,我们可以看到nlm给出的最小值点为(1,2),而optim给出的是(1.000348, 2.001812)。
我们也可以通过求解函数的导数为0的点求解函数的极值。还是以1式为例。运行下面的代码:
D(expression(log(x)/(1+x)),"x")
结果为:1/x/(1 + x) - log(x)/(1 + x)^2。 (2)
对于这样的方程,我们通常是没有好的办法让R给出解析解的。我们可以使用一些数值办法来求解方程(2)的数值解。常用的办法有:二分法,newton法,fisher得分法,不动点迭代法。下面我们来简单介绍算法的思想与R的实现代码。
一、二分法
二分法的思想十分简单,利用的就是函数的中值定理,局限也十分明显,只能求解出一个根而且速度较慢。所以函数的单调性,作图都是解决第一个局限的办法。
给出方程(1)的极小值利用二分法的求解程序:
fzero<-function(f,a,b,eps=1e-6){注:跟踪导函数值为0来检测收敛情况是诱人的,但是存在不稳定性,利用绝对收敛准则解决了这一问题(当然用相对收敛准则也是可以的)
二、Newton法
Newton-rapshon迭代是一种快速求根方法。主要利用泰勒级数展开来解决问题。
利用0=g’(x)=g’(x(t))+g’’(x(t))(x-x(t))(后面的等式是近似成立)来近似g’(x)。解上述的这个方程,我们可以得到一个很好的线性近似,迭代方程为:
X(t+1)=x(t)+g’(x(t))/g’’(x(t))
收敛条件依然使用绝对收敛。对于方程(1),有:
> D(expression(log(x)/(1+x)),"x")
1/x/(1 + x) - log(x)/(1 + x)^2
> D(expression(1/x/(1 + x) - log(x)/(1 + x)^2),"x")
-(1/x^2/(1 + x) + 1/x/(1 + x)^2 + (1/x/(1 + x)^2 - log(x) * (2 * (1+ x))/((1 + x)^2)^2))
问题的newton增量为:h(t)=((x(t)+1)(1+1/x(t)-logx(t))/(3+4/x(t)+1/(x(t))^2-2logx(t))
给出方程(1)的极小值利用newton法的求解程序:
三、Fisher得分法
我们知道fisher信息量是对数似然函数的二阶导数的期望的相反数。所以在求解g对应着的mle优化时,使用fisher信息量替换是合理的。这里不再给出程序。
四、切线法
在牛顿法的基础上,我们把导数改为曲线上两点的连线的斜率显然也十分的合理。这便是切线法的基本想法。我们还是给出上面例子的R程序:
f0<-function(x){五、不动点迭代法
除去二分法外,我们所讨论的都是不动点迭代的特例。这里只是简要叙述一下不动点迭代法的原理,并以开篇的例子给出R程序。
不动点定理是一个结果表示函数F在某种特定情况下,至少有一个不动点存在,即至少有一个点x能令函数F(x)=x。在数学中有很多定理能保证函数在一定的条件下必定有一个或更多的不动点,而在这些最基本的定性结果当中存在不动点及其定理被应用的结果具有非常普遍的价值。
ffour<-function(f0,a,eps=1e-6){这里还想说一点的就是关于不动点迭代的条件(百度一下,你就知道),如果不满足的话,需要对导函数前乘上一个系数加以调整,本例中的4*f0(a)+a正是调整刻度的结果。
<pre class="plain" name="code"></pre>
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30